Digital instruments & protocols

How digital mass flow controllers & Ethernet-based network protocols can enhance your production processes

Ether**CAT**

BrooksInstument.com

Solve process challenges using rich data from your instrumentation

Everything from your PC and smartphone to your clock, refrigerator and automobile have sensors, memory and communication capabilities, increasingly known as the internet of things (IoT). Incredible intelligence is being built into just about every device we touch, and, if it's not built in, the information is available via communication with "the cloud."

This same evolution of intelligence and communication capability is occurring in industrial process control instrumentation and systems. By using the information available in smart/digital devices and the communication capabilities of Ethernet-based digital communication protocols, the integration, startup, maintenance and productivity of industrial process systems can be dramatically improved. We will review the information available from digital instrumentation, various digital communication protocols and how Ethernet-connected digital mass flow controllers (MFCs) can be used to enhance your process.

We will examine:

- Evolution of process control instrumentation and communications from analog to digital
- Range of traditional digital and Ethernet-based communication protocols and their key capabilities
- Ways to enhance your process by using the full breadth and depth of information available from digital MFCs

Digital communications evolution

In the beginning... If we travel all the way back to the dawn of electronic communication, to the telegraph, we discover the earliest limits on how much information could be sent, and how fast. In 1841, when U.S. President William Henry Harrison died of pneumonia a month after taking office, it took 110 days for the news to reach Los Angeles via mail.

If you do the math on the number of letters carried, number of words per letter and the time to get there, it adds up to a data transmission rate of about 6 bits per second. Today, we have data rates of 100 megabits per second (Mbps) and higher. And the density and complexity of information sent at those speeds is truly transformative.

Advanced communications protocols enable ultra-fast information exchange between devices. This is one of the fundamental changes driving the evolution of automation systems from analog to digital: giving automation systems greater ability to leverage the amount of information that can be communicated through I/O or machine buses.

These protocols also enable sophisticated, real-time interaction and control between the PLC or DCS and digital instrumentation. This is crucial to taking full advantage of advanced control, diagnostic and alarming capabilities available on digital instrumentation.

Ethernet-based communications enable sophisticated, real-time interaction and control between automation PLCs and digital instrumentation.

Range of digital communications protocols

While some of the older technologies like 4-20 mA analog I/O are used, mainly for I/O purposes, most new systems use some form of digital communications for factory-wide monitoring and control. Furthermore, there is a trend toward Ethernet-based protocols like EtherNet/IP™, EtherCAT® and PROFINET.

There are multiple digital communications protocols in use across the automation market in general including:

One of the fundamental design decisions OEMs and systems integrators make, early in the design process, is the communications protocol.

Advantages of "going digital"

No matter what digital communication protocol you have selected, there are fundamental advantages provided by "going digital":

- Provides a powerful source of rich data from MFC to PLC/DCS to enhance process control.
 - Multivariable (Flow, Temperature, etc.), alarms, totalizer values, valve drive/position and other data
- **2.** Real-time diagnostics information is readily available.
 - Facilitates installation, start up and troubleshooting
 - Supports predictive and/or preventive maintenance
- **3.** Increased **device flexibility**—such as devices with multiple calibrations—reduces spares inventory and maximizes uptime.

- Achieve simplification and cost savings with standardized cables.
 - Off-the-shelf multi-drop cables are more cost-effective vs. custom discrete wiring
 - Multi-drop system configurations simplify wiring requirements vs. analog point-topoint installations
 - Simplified wiring reduces documentation level of effort and errors
 - Flexible topologies offered by digital systems simplify future expansions

How digital protocols enhance device performance

Automation devices with digital I/O, regardless of the protocol used, can provide a myriad of information that is not available from a basic analog I/O device. A typical analog I/O device can provide a single process variable or, in some cases, two.

With a digital MFC, you can read the flow, totalized flow, temperature, valve drive and other variables simultaneously—and you can communicate that information to the PLC/DCS or other devices on the network for further action, in real time. You can take advantage of multi-gas capabilities and dynamic gas range switching by sending a digital command. For example, you can set up your system such that an MFC can be changed from a 25 standard liters per minute (slpm) oxygen device to a 20 slpm CO₂ device.

This capability can enable significant process equipment cost savings. For example, by taking full advantage of the multi-gas/ multi-range capabilities in a Brooks digital MFC, it is possible to reduce the number of SKUs required by 90 percent, reducing inventory and simplifying purchasing.

By taking full advantage of a Brooks digital MFC's multi-gas/ multi-range capabilities, it is possible to reduce the number of SKUs required by 90 percent, reducing inventory and simplifying purchasing.

8 | Digital instrument & protocols

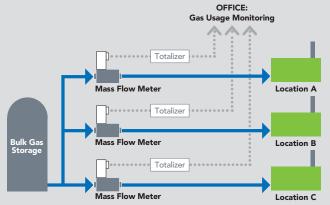
How digital protocols enhance device performance

Preventive maintenance and process quality are also enhanced by having a broad array of thresholds and alarms that can be set and monitored by Brooks digital MFCs. These include:

- High-flow alarm
- Low-flow alarm
- No-flow indication
- Setpoint deviation alarm
- Valve drive alarm
- Temperature out of limits
- Totalizer overflow
- Internal power supply failure
- Valve drive out of limits
- Device calibration due
- Device overhaul due
- Internal diagnostic alarms

Alarms like these can help keep critical process systems on track. For example, it's common in processes to schedule regular device calibration at set intervals. So "device calibration due" and "device overhaul due" can alert operations personnel to these intervals, making sure they schedule process equipment downtime to comply with their ISO 9001 requirements.

9 | Digital instrument & protocols

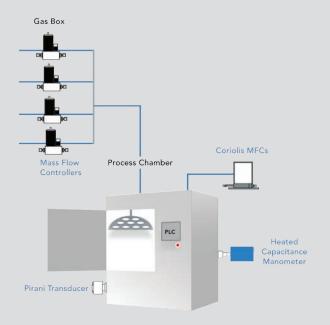

Digital application: Flow totalization in gas usage monitoring

A common application where accurate flow totalization is required is gas usage monitoring. In this example, several different systems or locations within a facility share a single gas source, which is a common system design. To account for usage, or allocate costs properly, the facility needs to monitor the amount of gas consumed by each user.

Typical installation: A typical installation for this application includes several flow meters plus secondary electronics with totalizer function cabling from each device connected to a central monitoring system. The totalizer gets a flow signal from the flow meter, calculates the totalized flow and sends that value to the central monitoring system.

With this approach, the accuracy of the totalized flow may not be optimized. There may be some additional error due to resolution of the analog-to-digital converters (ADC) and signal noise. The user also needs to be sure the analog signals were calibrated properly and that they match the span and time units of the flow meters.

Signal filtering, signal cutoffs, sample rates and sample period can also have an impact. All these factors could lead to improper billing or cost allocation. There are also additional hardware and cabling costs with this approach that could be avoided.


Typical gas usage monitoring installation using analog mass flow meters

Digital application: Process total flow measurement

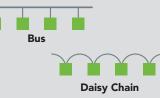
Using digital mass flow meters: An alternate approach uses digital mass flow meters, which calculate the totalized flow value internally. This approach can also be used locally with mass flow controllers. With this approach, no additional inaccuracy is introduced with a secondary calculation, and the need for digital-to-analog conversion is eliminated.

Understanding the total flow into the process chamber, in real-time and without the need for digital-to-analog conversion, is a key factor that process managers can use to optimize yields. The digital totalizer command provides real-time feedback to process and equipment engineers.

Alternate installation using digital mass flow meters

11 | Digital instrument & protocols

Considerations when choosing digital communications protocols


Supported network topologies

It's important to realize that when selecting the digital protocol, you will be designing a *network* in the machine: sensors, drives, devices like MFCs, HMIs and the machine PLC or DCS are all going to be networked together. There are several network topologies that can be implemented:

Point-to-point or star networks

offer easy set-up, fast and reliable pathways (one can fail and the others keep working) and the ability to add nodes; however, this topology is not good for large networks. Also, this is the only topology for analog and RS-232 devices.

Multi-drop networks can use either a bus or daisy chain arrangement. They offer easy setup but are vulnerable to disruption if there is a break in the chain. This is typical for RS-485, DeviceNet[™], EtherNet/IP[™], PROFIBUS[®], and PRFOFINET networks.

A ring topology can handle a lot of traffic and is easy to install, manage and troubleshoot. EtherCAT® and EtherNet/IP™ support this topology.

The mesh topology, while the most complex (it's the topology the internet uses), is extremely reliable because of its built-in redundancy: Adding devices actually improves data rates and reliability. It works well for wireless networks; however, in a wired environment, it can be expensive.

Along with a system's network topology, digital protocol selection should also be based on the essential performance characteristics of each protocol. While there are many factors to assess for each protocol, the number of nodes supported, the throughput (or baud) rates and the message size are essential.

Considerations when choosing digital communications protocols

This information can help OEM design engineers and end-user engineering staffs consider the real-time communications requirements for their systems, as well as how much/how dense the information each digital device needs to share in real time with the system controller.

Protocol/ Characteristics	Nodes	Baud Rates	Message Size
DeviceNet	64	125K, 250K or 500K	8 Bytes
PROFIBUS	127	1200-12Mbps	244 Bytes
EtherCAT®	65,535	100M	1500 Bytes
EtherNet/IP PROFINET	No Limit	10 Mbps, 100 Mbps or 1 Gbps	1440 Bytes
HART	15	1200	31 Bytes (plus data)
Foundation Fieldbus	240	31.25K	240 Octets (Bytes)
RS-485	16	1200–115K	24 Bytes

Expanding portfolio of digital instruments

Brooks Instrument continues to invest in its portfolio of digital MFCs and other automation instruments and is committed to supporting multiple digital and Ethernetbased communications interfaces on its devices. This will help ensure that OEMs and end users in a variety of sectors have automation systems equipped with state-of-the-art fluid measurement and control systems that offer the enhanced flexibility and efficiency the industry requires.

How can we help?

No matter what your digital MFC needs, Brooks has a solution for you. We can help identify the optimum digital communications protocol and configure our devices with the multivariable data capabilities, alarms and diagnostics to fully satisfy your process requirements.

CONTACT US TODAY.

T: 215-362-3527 Brooks.Mktg@BrooksInstrument.com

Brooks Instrument 407 West Vine Street Hatfield, PA 19440-0903 USA

All specifications are subject to change without notice. Brooks is a trademark of Brooks Instrument, LLC.

© Copyright 2023 Brooks Instrument, LLC All rights reserved.

