X-DPT-EtherNetIP-SLA5800-Series-RevB-MFC-eng Part Number: 541B208AAG March 2019

SLA5800 Series Elastomer Sealed, Thermal Mass Flow Controllers & Meters

EtherNet/IP[™] Supplemental Manual

www.BrooksInstrument.com

Essential Instructions

Read this page before proceeding!

Brooks Instrument designs, manufactures and tests its products to meet many national and international standards. Because these instruments are sophisticated technical products, you must properly install, use and maintain them to ensure they continue to operate within their normal specifications. The following instructions must be adhered to and integrated into your safety program when installing, using and maintaining Brooks Products.

- Read all instructions prior to installing, operating and servicing the product. If this instruction manual is not the correct manual, please see back cover for local sales office contact information. Save this instruction manual for future reference.
- If you do not understand any of the instructions, contact your BrooksInstrument representative for clarification.
- Follow all warnings, cautions and instructions marked on and supplied with the product.
- Inform and educate your personnel in the proper installation, operation and maintenance of the product.
- Install your equipment as specified in the installation instructions of the appropriate instruction manual and per applicable local and national codes. Connect all products to the proper electrical and pressure sources.
- To ensure proper performance, use qualified personnel to install, operate, update, program and maintain the product.
- When replacement parts are required, ensure that qualified people use replacement parts specified by BrooksInstrument.
- Unauthorized parts and procedures can affect the product's performance and place the safe operation of your process at risk. Look-alike substitutions may result in fire, electrical hazards or improper operation.
- Ensure that all equipment doors are closed and protective covers are in place, except when maintenance is being performed by qualified persons, to prevent electrical shock and personal injury.

ESD (Electrostatic Discharge)

This instrument contains electronic components that are susceptible to damage by electricity. Proper handling procedures must be observed during the removal, installation, or other handling of internal circuit boards or devices.

Handling Procedure:

- 1. Power to the unit must be removed.
- 2. Personnel must be grounded, via a wrist strap or other safe, suitable means before any printed circuit card or other internal device is installed, removed or adjusted.
- 3. Printed circuit cards must be transported in a conductive container. Boards must not be removed from protective enclosure until immediately before installation. Removed boards must immediately be placed in protective container for transport, storage or return to factory.

Comments:

This instrument is not unique in its content of ESD (electrostatic discharge) sensitive components. Most modern electronic designs contain components that utilize metal oxide technology (NMOS, SMOS, etc.). Experience has proven that even small amounts of static electricity can damage or destroy these devices. Damaged components, even though they appear to function properly, exhibit early failure.

Section 1 General Information General Information	6
Section 2 Definition of Terms Definition of Terms	7
Deminition of Terms	
Section 3 Before Starting	
Before Starting	8
Background & Assumptions	8
Compliance	8
Notations	9
Numbers	9
EPATHS	9
Section 4 Quick Start	
Physical Interfaces	9
Power Supply	10
Network	
MOD LED	12
NET LED	13
TC/IP Network Configuration	13
Class 1 Implicit Connection	14
Class 3 Explicit Connection	15

Section 5 Configuration

Commonly Configured Attributes	16
Data Units	17
Operational Modes	18
Valve Safe Mode	19
Gas Page Calibration Configuration	19
Class 1 Connections	19
Data Assemblies	20
Configuration Assembly	20
Output Assemblies (a.k.a. Consume Assemblies)	23
Input Assemblies (a.k.a. Produce Assemblies)	24

Section 6 Detailed Configuration

Overview	
Identity Object [0x01]	
Attributes	
Services	
Reset	

Section 6 Detailed Configuration

Assembly Object [0x4] Attributes	31
Attributes	31
Services	32
Device Manager Object [0x64]	33
Attributes	33
Services	35
Flow Meter Object (0xA9)	36
Attributes	36
Services	41
Valve Driver Object [0x96]	
Attributes	42
Services	44
Flow Controller Object [0x9E]	45
Attributes	45
Services	46
Process Gas Object [0X66]	47
Attributes	47
Services	48
Temperature Meter Object [0xA4]	49
Attributes	
Services	50
Status Object [0xB8]	50
Attributes	
Services	53

Section 7 Status

Device Status	54
Bit 0: Device is Executing	54
Bit 1: Flow Reading Valid	55
Bit 2: Temperature Reading Valid	55
Bit 3: Device is Zeroing	
Bit 4: Zero Recommended	
Condition 1: Zero Warn Time Expired	
Condition 2: Zero Out of Tolerance	
Bit 5: Zero Operation Inhibit	
Bit 8: Service Error	
Bit 9: Device Alarm	
Bit 10: Device Warning	
Warnings	59
Bit 0: Low Flow Warning	59
Bit 1: High Flow Warning	
Bit 3: Choked Flow Warning	60
Bit 4: Excessive Zero Drift Warning	61
Bit 5: Bad Zero Warning	62
Bit 8: Valve High Warning	63
Bit 9: Valve Low Warning	63
Bit 11: Setpoint Deviation	64
Bit 13: Setpoint Over range	65
Bit 14: Setpoint Limited	66
Bit 17: Calibration Due	67
Bit 18: Totalizer Overflow	67
Bit 19: Overhaul Due	

Section 7 Status

Bit 24: High Temperature Warning	68
Bit 25: Low Temperature	68
Bit 26: Supply Volts High	
Bit 27: Supply Volts Low	
Alarms	
Bit 0: Low Flow Alarm	
Bit 1: High Flow Alarm	
Bit 2: No Flow Alarm	71
Bit 3: Choked Flow Alarm	
Bit 23: Using Backup NV Memory	73
Bit 24: Temperature Sensor Fail	73
Errors	74
Bit 2: Back Streaming Error	
Bit 18: Internal Communication Error	
Bit 23: NV Memory Fail	
Typical Status High/Low Processing	75

Section 8 Troubleshooting

roubleshooting

Section 9 Appendix

Appendix A – Ethernet/IP Connections	77
Appendix B- Data Type Definitions	78
Appendix C- Data Units	79
Appendix D- Service Summary Details	80

Section 10 Glossary

Glossary	۷
0.0000	,

Section 1: General Information

Many applications of Flow Controllers/Meters are moving to increase the use of automation. Automation comes in many forms: PLC's (Programmable Logic Controllers, like those from Allen/Bradley, DCS's (Distributed Control Systems, such as Emerson's DeltaV), PC-based solutions (National Instruments LabVIEW[™]), and Ethernet based field buses. Digital communications from these varied systems and the devices they measure and control, are a very effective means of not only accomplishing more effective and rapid system integration, but also providing greatly improved system diagnostics and maintainability.

EtherNet/IP[™] is an Ethernet-based communications system for industrial automation applications built upon the IEEE 802.3 standards and TCP/IP communications standards. EtherNet/IP[™] utilizes the Common Industrial Protocol (CIP[™]) as a top layer (application layer) of the TCP/IP protocol stack. This solution leverages the power of the internet and enterprise connectivity, combined with the functionality and comprehensive suite of messages and services for manufacturing automation applications. The EtherNet/IP[™] interface is now available on SLA5800 Series.

Section 2: Definition of Terms

Abbreviation	Description	
Byte	A Byte refers to 8 consecutive bits.	
CRC	Checksum (Cyclic Redundancy Check)	
EIP	Ethernet/IP	
EDS	Electronic Data Sheet	
EtherNet/IP™	Ethernet – Industrial Protocol	
LSB	Least Significant Bit or Least Significant Byte	
MAC	Media Access Control is responsible for address checking and is most often done in the hardware of a NIC.	
Master	ter A Master is a unit which controls the Slaves, feeding them commands and receiving status reports in exchange.	
MFC/MFM	Mass Flow Controller / Mass Flow Meter	
MSB	Most Significant Bit or Most Significant Byte	
MTU	Maximum Transmission Unit. The maximum payload that a standard Ethernet Frame can hold. The MTU is set at 1500 bytes (Not considering the Header and Checksum).	
NIC	Network Interface Controller. A hardware component that connects a computer to a network. Non-Volatile	
NV		
OSI Model	A standardized representation for how a communication system can be organized. (e.g., a protocol stack) The model is divided into layers, each responsible for a part of the communication.	
RO	Read Only	
RT	Real-time. A system that adheres to strict timing demands.	
RW	Read / Write	
Slave	A Slave is a unit (node) on the network (e.g., an MFC). The Slave is connected to a Master.	
Stack	A synonym for the implementation of the layers of a protocol.	
TCP/IP	Transport Control Protocol/Internet Protocol	
Topology	The way a network (Master & Slaves) is inter-connected. The overall layout. (e.g., Star, Tree, Line Topology)	
WO	Write Only	

Section 3: Before Starting

Background & Assumptions

This manual is a supplement to the SLA5800 Series Mass Flow Controller Installation and Operation Manual. It is recommended that the owner read the Operations Manual first before continuing with this supplement.

This manual assumes a basic knowledge and understanding of the EtherNet/IP[™] protocol, its topology and its method of logically accessing the data or parameters contained within a device. This manual also assumes basic knowledge and understanding regarding the operation of Mass Flow Controllers or Mass Flow Meters. This manual is not intended to be a replacement to the ODVA specification, which is still the authoritative definition and description of EtherNet/IP[™] communications. It is recommended, but not required for the purposes of this manual, that the user obtain a copy of the EtherNet/IP[™] specification from ODVA (http://www.odva.org/).

This manual does not make any assumptions about any manufacturer of equipment or custom software used by the user to communicate with the Brooks Instrument device but assumes the user has thorough understanding of such equipment and any configuration software.

Compliance

The SLA5800 Series Mass Flow Controller (MFC) or Mass Flow Meter (MFM) conforms to the ODVA specified Device Profile for a Generic Device.

Notations	
	This section details notations and conventions used throughout the manual. It is recommended that the reader become very familiar with these conventions. Hypertext links are used in the manual to assist in navigating.
	A glossary is provided for reference in Section: 10 Glossary to aid in reviewing and/or to define any unfamiliar terms.
Numbers	
	Numeric values used throughout this manual will be clearly denoted as to the base numeric system it represents. All hexadecimal numbers (base 16) will be prefixed with a 0x, like 0xA4. All binary numbers (base 2) will be suffixed with a b, like 1001b. All other numbers not annotated this way will be assumed decimal (base 10).
EPATHS	EDATLY will be depended within breakets [] or brease (), like [0.24, 4, 2]
	EPATH's will be denoted within brackets [] or braces {}, like [0x31, 1, 3], {0x31-1-3} which represents, left to right, the Class ID (hexadecimal or decimal), Instance ID (decimal), and Attribute ID (decimal)

Section 4: Quick Start

	This section assumes that the owner of the Digital Series device has a fully operational and trouble-free communications network with appropriate power supplies. This section also assumes that a master device or application is connected to the network, capable of Implicit (Class 1) and Explicit (Class 3) message communications. Both types of data communication modes are supported by the SLA5800 Series EtherNet/IP [™] device.
Physical Interfaces	 The available physical interfaces on the EtherNet/IP[™] device are listed below: 5 pin M8 threaded male connector for power and Analog I/O, indicated by pwr. In and Out ports with RJ-45 connectors. 2.5mm female jack for RS485 diagnostic port indicated by 'DIAG', refer to the SLA5800 Series Installation and Operation Manual for more details.

Power Supply

Power needs to be supplied via the M8 connector. This connector also provides access to analog I/O signals, see Table 4-1.

Figure 4-1: EtherNet/IP Top Cover

Figure 4-2: M8 Male Device Connector Pin Layout, Pin Side View

Pin Label	Function at Remote Connector		
V+	Positive Power Supply Voltage		
V-	Power Supply Ground		
N/C	Not Connected		

M8 mating cables can be purchased as a second line item, details given below.

Figure 4-4: M8 Female Mating Cable Connector Pin Layout

Network

Table 4-2: Wire Labeling of M8 Female Mating Cable Connector

Wire Color	Wire Label	Function at Remote Connector	
Blue	V	Power Supply Ground	
Brown	V+	Positive Power Supply Voltage	
Black	N/C	Not Connected	
White	N/C	Not Connected	
Grey	N/C	Not Connected	

Table 4-3: M8 Female Mating Cable Part Numbers

Supplier	Part Number	Description
Brooks	124X049AAA	M8 Mating Cable 2m
Instrument	124X050AAA	M8 Mating Cable 5m
	124Z170AAA	ECAT to DB15 Male

Each SLA5800 Series EtherNet/IP[™] device has (2) RJ-45 Ethernet Connection ports labeled 1 and 2. Network connections can be made to either or both ports, depending on the network topology. The SLA5800 Series EtherNet/IP[™] device will support star, linear and DLR topologies. Click the following reference for more detailed information on EIP topologies and their implementation <u>EtherNet/IP Embedded Switch Technology</u>.

The SLA5800 Series EtherNet/IP[™] device supports auto-negotiation of the communications link. Both ports support data rates of 10/100 Mbps and Half/Full duplex communications. The device may be directly connected to the Ethernet NIC on a desktop or laptop PC for configuration and commissioning activities

MOD LED

Indicator State	Summary	Requirement	
Off	No power	No power is supplied to the device.	
Green	Device Operational	Device is operating correctly.	
Flashing Green	Standby	Device has not been configured.	
Flashing Red	Major Recoverable Fault	The device has detected a Major Recoverable Fault (Alarm)	
Red	Major Unrecoverable Fault	^e The device has detected a Major Unrecoverable fault (Error)	
Flashing Green / Red	Self-test	The device is performing its power-up testing.	

NET LED

Indicator State	Summary	Requirement	
Off	Not powered, or no IP address	The device is powered off or is powered on but with no IP address configured.	
Flashing Green	No connections	An IP address is configured, but no CIP connections are established with the device.	
Steady Green	Connected	An IP address is configured, at least one CIP connection (any transport class) is established with the device.	
Flashing Red	Connection timeout	An IP address is configured, and an Exclusive Owner connection has timed out. The NET indicator will return to steady green when the Exclusive Owner connection is reestablished.	
Steady Red	Duplicate IP	The device has detected that its IP address is already in use.	
Flashing Green / Red	Self-test	The device is performing its power-up testing.	

Table 4-5: NET LED Indicator Definitions

TCP/IP Network Configuration

The TCP/IP network settings can be configured using a web browser interface or through a variety of network utilities. By default, SLA5800 Series EtherNet/IP[™] MFC is shipped with DHCP enabled. If no DHCP server is available on the network, the device defaults to the following TCP/IP connections settings:

IP Address: 192.168.1.100

NET Mask: 255.255.255.0

Gateway Address: 0.0.0.0

DNS1: 0.0.0.0

DNS2: 0.0.0.0

To configure using a web browser, connect the device to the network that is configured with the same subnet as the device (192.168.1.xxx). Open the web browser and enter the IP address of the device as the URL. The following will be displayed:

BROOKS [°] Instrument	Network Configuration			
Beyond Measure				
Interface Configuration	 Stored Value DHCP 			
Service & Support		1		
	IP Address:	192.168.1.20		
	Network Mask:	255 255 255 0		
	Gateway Address:	0.0.0.0		
	Name Server:	1.1.1.1		
	Name Server 2:	2.2.2.2		
	Domain Name:	brooksinstrument.com		
	Host Name:	SLA		
	Submit			

By default, DHCP is selected. To manually configure the network settings, select the 'Store Value' radio button. The network configuration fields will become active. Click 'Submit' after setting the network configuration.

NOTE: Once the settings have been changed, the TCP/IP address will need to be reentered in the URL field of the browser to reconnect with the device and confirm the network settings.

Class 1 Implicit Connection

For quick start, the following connection configuration, "Class 1 Connections," can be used to create a Class 1, Implicit connection. See Section 5 for more information on other Class 1, Implicit connections. See Appendix A for details on Class 1 Implicit Connection Types.

MFC

Table 4-	6: MFC 1	Exclusive Owner	Connection Configuration	

Input ³ Assembly ID	101
Input Assembly Size	See Section 5.3 for Assembly 101 Size
Input Assembly RPI	> = 50 msec
Output ³ Assembly	201
Output Assembly Size	See Section 5.3 for Assembly 201 Size
Output Assembly RPI	>= 50 msec
Configuration Assembly ¹	100
Configuration Assembly Size ²	See Section 5.3 for Configuration Assembly 100 Size

1. If no configuration data is to be transferred to the device, set the configuration assembly ID to 0 with a data length of 0. 2. All field values in the configuration assembly data must have valid values or the assembly data will be rejected along with the

connection open request.

3. The terms Input/Output are relative to the device

MFM

Table 4-7: MFM Input Only Connection Configuration

Input Assembly ID	102
Input Assembly Size	See Section 5.3 for Assembly 102 Size
Input Assembly RPI	> = 50 msec
Output Assembly	203
Output Assembly Size	See Section 5.3 for Assembly 203 Size
Output Assembly RPI	>= 50 msec
Configuration Assembly ¹	100
Configuration Assembly Size ²	See Section 5.3 for Configuration Assembly 100 Size

1. If no configuration data is to be transferred to the device, set the configuration assembly ID to 0 with a data length of 0. 2. All field values in the configuration assembly data must have valid values or the assembly data will be rejected along with

the connection open request.

3. The terms Input/Output are relative to the device

Class 3 Explicit Connection

The SLA5800 Series EtherNet/IP[™] devices support Class 3 explicit connections. See Section 6 for details on supported objects and attribute definitions in the device.

Section 5: Configuration

Commonly Configured Attributes

EtherNet/IP[™] provides several ways to configure a device. As noted in the previous sections, a configuration assembly can be used when establishing Class 1 implicit connections, or alternatively, Class 3 Explicit connections can be used to set/get individual parameters

ODVA also defines Electronic Data Sheets (EDS) that specify the connections and parameters that are available in the device. The SLA5800 Series EtherNet/IP[™] device has an EDS file and is available at <u>https://www.brooksinstrument.com/en/products/accessories-</u><u>software/digital-communication-system-files/ethernetip</u>. Your EIP network configuration tool may be able to read EDS files directly to facilitate the configuration process.

The SLA5800 Series MFC/MFM supports many different configurable attributes. The out-of-box defaults meet the needs of a great majority of applications, but some applications may require the device to report more information or behave differently than is configured with default settings, such as valve position, safe mode, flow and/or setpoint engineering units, etc.

This section covers the more common attributes that are configured to meet the unique needs of applications. The terms "attribute" and "parameters" can be used interchangeably and ultimately refer to the same data item within the MFC device. The term "parameter" is widely used within the EDS paradigm whereas "attribute" is used within the ODVA specification.

The following tables will reference both the EDS Parameter name (if the configuration software utilizes the EDS sheet) and the EPATH descriptor (class-instance-attribute) for those who are writing custom or have other types of configuration interfaces.

Attribute	EDS Parameter	EPATH	Default	Semantics
Flow Meter Data Units	Flow_Unit	[0xA9-1-4]	4103 (0x1007)	See Section 5.1.1 Data Units
Flow Controller Data Units	Ctrl_Units	[0x9E-1-4]	4103 (0x1007)	See Section 5.1.1 Data Units
Temperature Meter Data Units	Temp_Units	[0xA4-1-4]	4608 (0x1200)	See Section 5.1.1 Data Units
Selected Gas Calibration	Cal_Instance	[0xA9-1-35]	1	The instance of the Gas Calibration Object used to linearize the Flow Sensor
Valve Driver Safe State	Safe_State	[0x96-1-21]	0 (Close)	The valve will close when the device is in its Safe State
Status Alarm Mask	Alarm_Mask	[0xB8-1-8]	0x00000000	All Alarm Bits are masked
Status Warning Mask	Warning_Mask	[0xB8-1-9]	0x00000000	All Warning Bits are masked

Table 5-1: Commonly Configured Attributes/Parameters

Data Units

The SLA5800 Series MFC can report flow and accept setpoints in values associated to engineering units. This can simplify user interpretation of information from the device by letting the device perform the calculations necessary to interpret the flow signal from its internal sensor based upon information in the selected calibration.

 Table 5-2: Configurable Data Units Attributes

Parameter	ЕРАТН	Applicable Units Table	Out-of-Box Default
Flow Sensor Data Units	[0xA9-1-4]	Appendix C: Volumetric Flow Units Table	Percent
Flow Totalizer Data Units	[0xA9-1-125]	Appendix C: Volume Units Table	Liters
Flow Control Data Units	[0x9E-1-4]	Appendix C: Volumetric Flow Units Table	Percent
Temperature Data Units	[0xA4-1-4]	Appendix C: Temperature Units	deg C

Operational Modes

All products in the SLA5800 Series product line employ an internal State Machine to govern the operational mode of the device. One particular operational mode is the Safe Mode (a.k.a. the Safe State). For MFC(s), Safe Mode stops the interface controller and forces the valve actuator to a define state. By default, the valve actuator will be closed. The state of the actuator in Safe Mode can be configured in the Valve Actuator object, parameters [0x96-1-21] and [0x96-1-22].

The device will be in Safe Mode when anyone of the following conditions exist:

- If any Error Status bit is set [0xB8-1-4], the device will remain in Safe Mode or will transition out of the Executing State to the Safe Mode, regardless of the establishment of the Class 1 implicit connection or directive to the Device Management object.
- Provided all Error Status bits are clear, the establishment of a Class 1 implicit connection to the device will control the mode of the device.¹
- If the Class 1 implicit connection is closed or times out, the device will transition out of the Executing State to the Safe Mode.
- Provided all Error Status bits are clear, and the Class 1 Implicit connection does not exist, moving in/out of the Executing state can be achieved using Start/Stop directives to the Device Management object. See section TBD on using these directives.

State.

¹The Class 1 Implicit Exclusive Owner connection message to the target device contains a header with certain flags required by the target device for proper operation. One of these flags is the Run/Idle flag. Setting of the Run/Idle flag is a function of the master scanner software. Consult your specific master scanner tools for setting this flag. One example would be changing the run mode of a PLC (run mode or program mode) would set/clear this flag. If the Run/Idle flag is set to Run, the device will be in the Executing State, otherwise the device will be in the Safe

Valve Safe Mode

Attribute Actuator Safe State in Valve Driver Object [0x96-1-21]. These states apply to both Normally Closed and Normally Open Valves.

Table 5-3: Safe State

Value	State
0	Closed (default)
1	Open
2	Hold
3	Use Safe Value

Gas Page Calibration Configuration

If the MFC/MFM contains multiple calibrations, the selection of a particular calibration can be configured in attribute Calibration Instance of the Flow Meter Object [0xA9-1-35].

The value of this attribute is limited to the number of Flow Calibration Objects configured in the device. The minimum value is 1, which is also the default value.

Class 1 Connections

The following tables describe the available Class 1 connection configurations in the device. See section TBD for assembly sizes and details on the data fields within each assembly.

MFC

Table 5-4: MFC Class 1 Connection Configurations

Name	Connection Type	Configuration Assembly	Output (Consume) Assembly	Input (Produce) Assembly
Ctrl/Mon XO	Exclusive Owner	100	101	201
Process Data 1 I/O	Input Only	-	300	201
Process Data 2 I/O	Input Only	-	301	202
Process Data 1 L/O	Listen Only	-	302	201
Process Data 2 L/O	Listen Only	-	303	202

Name	Connection Type	Configuration	Output (Consume)	Input (Produce)
Process Data 1 XO	Exclusive Owner	100	102	203
Process Data 2 I/O	Input Only	-	300	201
Process Data 1 I/O	Input Only	100	301	203
Process Data 2 L/O	Listen Only	-	300	201
Process Data 1 L/O	Listen Only	-	301	203

MFM Table 5-5: MFC Class 1 Connection Configurations

Data Assemblies

Configuration Assembly

The configuration assembly can be used to get or set configuration values in the device. Depending on the application tools for the master scanner, this configuration data can be sent to the device when Class 1 connections are created with the device. This data can also be accessed through explicit message exchanges by reading or writing class 4, instance 100, attribute 3. If the configuration data is sent to the device using this assembly, all the data fields in the assembly must be a valid value otherwise all the data will be rejected. Refer to the object definitions for more information on parameter in this assembly.

Instance ID: 100

Device Type: MFC

Assembly Size: 168 Bytes / 42 Words

Table 5-6: MFC Configuration Assembly Definition

Parameter	Class	Inst	ID	Data Type	Data Size	Description
Flow Data Units	169	1	4	DINT	4	Flow Engineering Units
Totalizer Units	169	1	125	DINT	4	Totalizer Engineering Units
Calibration Instance	169	1	35	DINT	4	Selected Process Gas Instance
Flow Alarm Trip Point High	169	1	17	REAL	4	High Flow Alarm Trip Point
Flow Alarm Trip Point Low	169	1	18	REAL	4	Low Flow Alarm Trip Point
Flow Alarm Hysteresis	169	1	19	REAL	4	Flow Alarm Hysteresis.
Flow Alarm Settling Time	169	1	20	DINT	4	Flow Alarm Settling Time
Flow Warning Trip Point High	169	1	21	REAL	4	High Flow Warning Trip Point
Flow Warning Trip Point Low	169	1	22	REAL	4	Low Flow Warning Trip Point
Flow Warning Hysteresis	169	1	23	REAL	4	Flow Warning Hysteresis
Flow Warning Settling Time	169	1	24	DINT	4	Flow Warning Settling Time

Parameter	Class	Inst	ID	Data Type	Data Size	Description
Zero Operation Duration	169	1	105	DINT	4	Duration for Sensor Zero Operations
No Flow Threshold	169	1	222	REAL	4	No Flow Limit Threshold
No Flow Settling Time	169	1	223	DINT	4	No Flow Limit Settling Time
Choked Flow Threshold	169	1	224	REAL	4	Choked Flow Limit Threshold
Choked Flow Settling Time	169	1	225	DINT	4	Choked Flow Limit Settling Time
Zero Warning Time	169	1	140	DINT	4	Time since last zero warning limit
Zero Warning Settling Time	169	1	141	DINT	4	Delay time after zero setpoint to check zero quality
Zero Warning Band	169	1	142	REAL	4	Excessive drift warning band
Zero Success Band	169	1	143	REAL	4	Sensor zero operation success band
Back Stream Flow Limit	169	1	228	REAL	4	Backstream flow threshold
Back Stream Settling Time	169	1	229	DINT	4	Backstream flow settling time
Valve Warning Trip Point High	150	1	18	REAL	4	Valve High Warning Trip Point
Valve Warning Trip Point Low	150	1	19	REAL	4	Valve Low Warning Trip Point
Valve Warning Hysteresis	150	1	20	REAL	4	Valve Warning Hysteresis
Valve Safe State	150	1	21	DINT	4	Valve Safe State
Valve Safe Value	150	1	22	REAL	4	Valve Safe Value
Controller Data Units	158	1	4	DINT	4	Flow Controller Engineering Units
Controller Warning Settling Time	158	1	15	DINT	4	Flow Controller Deviation Warning Settling Time
Controller Warning Error Band	158	1	16	REAL	4	Flow Controller Deviation Warning Error Band
Ramp Time	158	1	19	REAL	4	Flow Controller Ramp Time
Setpoint Limit	158	1	194	REAL	4	Flow Controller Setpoint Limit Value
Setpoint Limit Action	158	1	201	DINT	4	Flow Controller Setpoint Limit Behavior
Temperature Data Units	164	1	4	DINT	4	Temperature Engineering Units
Temperature Warning Trip Point High	164	1	21	REAL	4	High Temperature Warning Trip Point
Temperature Warning Trip Point Low	164	1	22	REAL	4	Low Temperature Warning Trip Point
Temperature Warning Settling Time	164	1	24	DINT	4	Temperature Warning Settling Time
Active Alarms Mask	184	1	8	DWORD	4	Alarms Bits Mask
Active Warnings Mask	184	1	9	DWORD	4	Warnings Bits Mask

Parameter	Class	Inst	ID	Data Type	Data Size	Description
Supply Voltage Warning Trip Point Low	100	1	191	REAL	4	Device power supply voltage high warning trip point
Supply Voltage Warning Trip Point High	100	1	192	REAL	4	Device power supply voltage warning low trip point
Supply Voltage Warning Settling Time	100	1	193	DINT	4	Device power supply voltage warning settling time

Instance ID: 100

Device Type: MFM

Assembly Size: 108 Bytes / 54 Words

Table 5-7: MFM Configuration Assembly Definition

Parameter	Class	Inst	ID	Data Type	Data Size	Description
Flow Data Units	169	1	4	DINT	4	Flow Engineering Units
Totalizer Units	169	1	125	DINT	4	Totalizer Engineering Units
Calibration Instance	169	1	35	DINT	4	Selected Process Gas Instance
Flow Alarm Trip Point High	169	1	17	REAL	4	High Flow Alarm Trip Point
Flow Alarm Trip Point Low	169	1	18	REAL	4	Low Flow Alarm Trip Point
Flow Alarm Hysteresis	169	1	19	REAL	4	Flow Alarm Hysteresis.
Flow Alarm Settling Time	169	1	20	DINT	4	Flow Alarm Settling Time
Flow Warning Trip Point High	169	1	21	REAL	4	High Flow Warning Trip Point
Flow Warning Trip Point Low	169	1	22	REAL	4	Low Flow Warning Trip Point
Flow Warning Hysteresis	169	1	23	REAL	4	Flow Warning Hysteresis
Flow Warning Settling Time	169	1	24	DINT	4	Flow Warning Settling Time
Zero Operation Duration	169	1	105	DINT	4	Duration for Sensor Zero Operations
Zero Warning Time	169	1	140	DINT	4	Time since last zero warning limit
Zero Warning Settling Time	169	1	141	DINT	4	Delay time after zero setpoint to check zero quality
Zero Warning Band	169	1	142	REAL	4	Excessive drift warning band
Zero Success Band	169	1	143	REAL	4	Sensor zero operation success band
Back Stream Flow Limit	169	1	228	REAL	4	Backstream flow threshold

Parameter	Class	Inst	ID	Data Type	Data Size	Description
Back Stream Settling Time	169	1	229	DINT	4	Backstream flow settling time
Temperature Data Units	164	1	4	DINT	4	Temperature Engineering Units
Temperature Warning Trip Point High	164	1	21	REAL	4	High Temperature Warning Trip Point
Temperature Warning Trip Point Low	164	1	22	REAL	4	Low Temperature Warning Trip Point
Temperature Warning Settling Time	164	1	24	DINT	4	Temperature Warning Settling Time
Active Alarms Mask	184	1	8	DWORD	4	Alarms Bits Mask
Active Warnings Mask	184	1	9	DWORD	4	Warnings Bits Mask
Supply Voltage Warning Trip Point Low	100	1	191	REAL	4	Device power supply voltage high warning trip point
Supply Voltage Warning Trip Point High	100	1	192	REAL	4	Device power supply voltage warning low trip point
Supply Voltage Warning Settling Time	100	1	193	DINT	4	Device power supply voltage warning settling time

Output Assemblies (a.k.a Consume Assemblies)

These assemblies are used to send data to the device. From the scanner perspective these are outputs. Each assembly is defined to be used with a certain type of connection: Exclusive Owner, Input Only, and Listen Only. See Appendix A for more information on connection types. Refer to the object definitions for more information on parameter in this assembly.

Process Control 1 (ID 101)

Instance ID: 101 Device Type: MFC

Assembly Size: 16 Bytes / 8 Words

Table 5-8

Parameter	Class	Inst	ID	Data Type	Data Size	Description
Setpoint	158	1	6	REAL	4	Flow controller setpoint
Valve Override	150	1	5	DINT	4	Valve Actuator Override Mode
Control Mode	158	1	TBD	DINT	4	Flow controller operational mode
Fixed Control Mode Value	158	1	TBD	REAL	4	Flow controller fixed controller mode actuator drive value

Null Data (ID(s) 300 – 303)

Instance ID: 300 to 303

Device Type: MFC/MFM

Assembly Size: 0 Bytes / 0 Words

Assembly Definition

Null Data assemblies are used for Listen Only or Input Only connections where no data is sent to the device, but an endpoint assembly must be defined when the connection is established.

Input Assemblies (a.k.a Produce Assemblies)

These assemblies are used to retrieve data from the device. From the scanner perspective these are inputs. Each assembly is defined to be used with a certain type of connection: Exclusive Owner, Input Only, and Listen Only. See Appendix A for more information on connection types. Refer to the object definitions for more information on parameter in this assembly.

Detailed Process Monitoring (ID 201)

Instance ID: 201

Device Type: MFC

Assembly Size: 32 Bytes / 16 Words

Table 5-9

Parameter	Class	Inst	ID	Data Type	Data Size	Description
Flow	169	1	6	REAL	4	Flow sensor value
Valve Position	150	1	6	REAL	4	Valve actuator position
Live Setpoint	158	1	202	REAL	4	Active setpoint
Active Alarms	184	1	4	DWORD	4	Active Alarms
Active Warnings	184	1	5	DWORD	4	Active Warnings
Active Errors	184	1	3	DWORD	4	Active Errors
Device Status	184	1	6	DWORD	4	Device Status

Totalizers and Other Process Conditions (ID 202)

Instance ID: 202

Device Type: MFC and MFM

Assembly Size: 36 Bytes / 18 Words

Table 5-10

Parameter	Class	Inst	ID	Data Type	Data Size	Description
Flow Totalizer	169	1	126	REAL	4	Flow sensor totalizer
Flow Hours	169	1	96	DINT	4	Total flow hours
Custom Flow Totalizer	169	1	130	REAL	4	Custom flow sensor totalizer
Temperature	164	1	6	REAL	4	Temperature
Process Gas Full Scale	102	Active Instance	45	REAL	4	Selected process gas page calibrated full scale
Process Gas Calibration Instance	169	1	35	DINT	4	Selected process gas page
Process Gas Standard Number	102	Active Instance	40	DINT	4	Selected process gas page gas standard number
FAT Date	102	Active Instance	300	DINT	4	Factory acceptance date
Device Input Supply Volts	100	1	190	REAL	4	Input voltage to MFC/MFM

Flow and Detailed Device Status (ID 203)

Instance ID: 203

Device Type: MFM

Assembly Size: 20 Bytes / 10 Words

Table 5-11

Parameter	Class	Inst	ID	Data Type	Data Size	Description
Flow	169	1	6	REAL	4	Flow sensor value
Active Alarms	184	1	4	DWORD	4	Active Alarms
Active Warnings	184	1	5	DWORD	4	Active Warnings
Active Errors	184	1	3	DWORD	4	Active Errors
Device Status	184	1	6	DWORD	4	Device Status

Section 6: Detailed Configuration

Overview

This section is recommended for advanced users of EtherNet/IP[™] and Brooks Instrument MFC/ MFM products.

This section details all the Classes, Instances, Attributes and Services supported by the SLA58xx Series MFC/MFM. Differences between the MFC and MFM device types are noted as exceptions in each sub-section. The classes detailed in the following sections can be categorized into the following functional groups to indicate what aspect of the device is being configured:

Data Flow

Classes in this category define how data is moved to and from Application classes to the Communication classes. Again, much of what is detailed in this category is provided for informational purposes and is very limited in its ability to be customized.

Application

This category of classes defines how the device is to function. In this case, the attributes in these classes configure the behavior of an MFC/MFM. Of all the categories listed here, this is the most customizable.

The table below lists the classes accessible in the SLA58xx Series

MFC/MFM and their associated category. It also indicates if the class is present in either of the MFC or MFM device types.

Class	ID	Category	Instances	MFC	MFM
Identity Object	1 (0x01)	Application	1	Y	Y
Assembly Object	4 (0x04)	Data Flow	5	Y	Y
Device Management Object	100 (0x64)	Application	1	Y	Y
Process Gas Object	102 (0x66)	Application	1-6 depending on the number of calibrations stored in the device	Y	Y
Valve Driver Object	150 (0x96)	Application	1	Y	N/A
Flow Controller Object	158 (0x9E)	Application	1	Y	N/A
Temperature Meter Object	164 (0xA4)	Application	1	Y	Y
Flow Meter Object	169 (0xA9)	Application	1	Y	Y
Status Object	184 (0xB8)	Applications	1	Y	Y

Table 6-1: Accessible Classes

In the ODVA specification, Instance 0 of both attributes and services are referred to as Class Level attributes and services. Instance 1 and higher are referred to as Instance Level attributes and services. This document will refer to all Levels by their instance number to avoid possible confusion.

The following details the meaning of the table heading names:

Attribute ID: The ID number of the attribute.

Name: The ODVA Specification label for the attribute.

Data Type: The ODVA Data Type for this attribute. See Appendix B for the definition of each data type.

Access Rule: "Get" means that the value of this attribute is "Read Only". "Set" means that the value of this attribute can be read and/or written.

NV: "NV" = The value of the attribute is stored in non-volatile memory and its value will be retained after a power cycle.

V: "V" = The value of the attribute is in volatile memory and its value will be returned to default after a power cycle.

Description: A brief description of the meaning of the attribute.

Notes: Any additional notations of importance about the attribute. These notes will be found in the same section as the table.

Identity Object [0x01]

Device Type(s): MFC and MFM

The Identity Object contains informational attributes that uniquely describe the device.

Example:

The use of attributes Vendor ID, Device Type, Product Code, and Serial Number together uniquely describe this device from any other device.

Attributes

Table 6-2: Identity Instance 0 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	V		If updates require an increase in this value, then the value of this attribute increases by 1. Range 1– 65535

Table 6-3:	Identity	Instance	1	Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Vendor ID	UINT	Get	NV	ID Number assigned to vendor by ODVA	Brooks Instrument ID = 246
2	Device Type	UINT	Get	NV	Numeric identifier indicating the ODVA Device Profile implemented by the device	Device Type = 43 (0x2B) See 'Note: Device Type' below
3	Product Code	UINT	Get	NV	Identification of a product of an individual vendor.	MFC = 6, MFM = 7
	Revision	STRUCT of:	~		Revision of the device the	
4	Major Revision	USINT	Get	NV	Identity Object represents	See 'Note: Revision' below
	Major Revision	USINT				
5	Status	WORD	Get	V	Summary status of the device.	See 'Note: Status' below
6	Serial Number	UDINT	Get	NV	Serial number of device.	See 'Note: Serial Number' below
7	Product Name	SHORT STRING	Get	NV	Human readable Identification.	

Note: Device Type	
	The device profile includes both an Identity and the Device Management Objects. Both objects contain an attribute that defines the kind of device this implementation supports. In this object the Device Type is assigned a numeric value of 0x2B. This number corresponds to the device profile ID contained in the ODVA specification. This attribute should not be confused with the Device Manager Device Type attribute [0x64, 1, 1] which is represented as a STRING (Short String) data type.
Note: Revision	
	The ODVA specification defines Major Revision as a significant change to the fit, form, or function of the product. Minor Revision is defined as changes that do not affect user configuration choices such as bug fixes, hardware component change, labeling change, etc.
Note: Status	
	The Status attribute of the Identity Object represents a summary status of the entire device. The definition of each bit in this attribute is defined by the ODVA EtherNet/IP [™] specification. The Status Object (0xB8) provides

detailed status of the operation of the MFC.

Bit	Label	Description
0	Owned	A Value of (1) indicates a Class 1 Implicit connection of type Exclusive Owner has been established with the device. Otherwise, this bit will have a value of (0)
1-7	Reserved	Always 0
8	Minor Recoverable Fault	One or more Warning Status bits are set in the Status Object (184) attribute (5)
9	Reserved	Always 0
10	Major Recoverable Fault	One or more Alarm Status bits are set in the Status Object (184) attribute (4)
11	Major Unrecoverable Fault	One or more Error Status bits are set in the Status Object (184) attribute (3)
12-15	Reserved	Always 0

Table 6-4: Identity Object [0x1] Status

Note: Serial Number

This Serial Number attribute differs from the Device Manager Serial Number attribute [0x64, 1, 9] whereby the Identity Object attribute [0x01, 1, 6] is strictly a numeric value that is guaranteed to be unique by the manufacturer across all ...the manufacturer's products. The Device Manager attribute 'Serial Number' is a string value that should represent the manufacturer's method of defining serial numbers for its products.

Services

Table 6-5: Identity Object Instance 0 Services

Serv	vice Code	Service Name	Service Description	Details
	0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix D: Get Attribute Single

Table 6-6: Identity Object Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix D: Get Attribute Single
0x05	Reset	Resets the DeviceNet interface of the device.	See 'Service Reset' Details Below

Reset

Table 6-7: Reset Service Arguments

Parameter Name	Data Type	Required	Parameter Value	Semantics
Туре	USINT	N	0	Emulate as closely as possible cycling power on the item the Identity Object represents. This value is the default if this parameter is omitted (default).
			1	Return as closely as possible to the out–of–box configuration, then as closely as possible emulate cycling power.

Table 6-8: Reset Service Response

Parameter Name	Data Type	Required	Parameter Value	Semantics
NO RESPONSE DATA				

Assembly Object [0X4]

Device Type(s): MFC and MFM

The Assembly Object contains a list of attributes that data can be written to (sink) and read from (source) via the Data Buffer (3) attribute contained in this object. The Assembly Object is generally assigned as the endpoint of an I/O Connection object (assigned via the Path attributes in the Connection Object). In this way, multiple pieces of data can be moved to and from the device with a reduced number of network messages. Assembly definitions supported by SLA5800 Series MFC/MFM

are defined in Section 5, 'Data Assemblies.'

Attributes

Table 6-9: Assembly	Object Instance	0 Attributes
Tuble 0 7. Hissembly	object mistance	0 miniomics

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	NV	Revision of the Assembly object class definition upon which the implementation is based	If updates require an increase in this value, then the value of this attribute increases by 1. Range 1– 65535

Table 6-10: Assembly Object Instance 1..n Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
3	Data Buffer	ARRAY of BYTE	Conditional	NV	Zero or more attributes that comprise the Data Buffer	If the assembly is used as an endpoint in an active Class 1 connection, then this attribute will be Get only. Writing to this attribute will return a Device State conflict error

Services

Table 6-11: Assembly Object Instance 0 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix D: Get Attribute Single

Table 6-12: Identity Object Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix D: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix D: Set Attribute Single

Device Manager Object [0X64]

Device Types: MFC and MFM

The Device Manager Object contains product information about the SLA5800 Series MFC/ MFM device such as serial number, model number, firmware revisions, etc. The object also captured device level operational parameters not specific to any other application object defined in the device.

Attributes

Table 6-13: Device Manager Instance 0 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	NV	Revision of the S-Device Supervisor object class definition upon which the implementation is based.	The current revision of this object is 02.

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Device Type	SHORT STRING	Get	NV	Device model name	Max. 8 Characters "MFC' or 'MFM
3	Manufacturer's Name	SHORT STRING	Get	NV	The name of the manufacturer of the device.	Max. 20 characters 'Brooks Instrument'
4	Manufacturer's Model Number	SHORT STRING	Get	NV	The manufacturer specified model number for the device	Max. 20 characters
5	Software Revision Level	SHORT STRING	Get	NV	Revision level of the firm- ware in the device.	Note: 'Revision Levels' below
6	Hardware Revision Level	SHORT STRING	Get	NV	Revision level of the hard- ware in the device.	
7	Manufacturer's Serial Number	SHORT STRING	Get	NV	Serial number of device assigned by the manufacturer	Max. 30 Characters

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
8	Device Configuration	SHORT STRING	Get	NV	Any additional manufacturer specific information about the device	Max. 50 characters 'N/A'
103	Main Board Boot- loader Version	SHORT STRING	Get	NV	Revision level of the Main Board Bootloader firmware	Max. 8 Characters. See Section Revision Level
104	Device Configuration ID	DINT	Get	NV	Configuration Level of the device assigned by the manufacturer	
190	Supply Voltage	REAL	Get	V	Input supply voltage to the device in Volts	Volts
191	Supply Voltage Minimum Warning Limit	REAL	Set	NV	Minimum threshold, in Volts, to set the Supply Volts Low Warning bit	See Section Note: Supply Voltage
192	Supply Voltage Maximum Warning Limit	REAL	Set	NV	Maximum threshold, in volts, to set the Supply Volts High Warning bit	See Section Note: Supply Voltage
193	Supply Voltage Warning Settling Time	DINT	Set	NV	The amount of time, in milliseconds, the warning condition must exist be- fore the warning bit is set	See Section Note: Supply Voltage
222	Power On Hours	REAL	Get	NV	Power on time totalizer	Hours
250	Communications Board Firmware Revision Level	SHORT STRING	Get	NV	Revision level of the communications board firmware	Max. 10 characters. See Section Revision Level
251	Communications Board Hardware Revision Level	SHORT STRING	Get	NV	Revision level of the communications board hardware	Max. 10 characters. See Section Revision Level
252	Communications Board Bootloader Revision Level	SHORT STRING	Get	NV	Revision level of the communications bootloader firmware	Max. 10 characters. See Section Revision Level

Table 6-14: Device Manager Instance 1 Attributes cont'd

Note Revision Level

Attributes representing firmware revisions running in the device are comprised of the major and minor revision level, separated by a decimal point (for example, 1.04).

Note Supply Voltage

The Device Manager Object reports the input supply voltage to device. Warning status bits (See Status Object section) can be used to indicate high or low input voltage condition. Setting attributes 191 and 192 set the threshold values for setting the status flags. The statuses are self-clearing when the voltage returns within nominal range. Attribute 193 can be configured to delay the setting or clearing of the status to minimize spurious indications.

Services

Table 6-15: Device Manager Object Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix D: Get Attribute Single

Flow Meter Object (0xA9)

Device Types: MFC and MFM

The Flow Meter Object is responsible for reporting flow sensor values. The Flow Meter Object in conjunction with the selected Flow Meter Object can linearize the sensor values and convert measurements into engineering data units.

Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
4	Data Units	ENGUNITS	Set	NV	Defines the Engineering Units context of Flow [6] and other attributes in this object.	See Note 'Data Units' below Default = Percent
6	Flow	REAL	Get	V	The amount of flow going through the sensor	This value is corrected, converted, and calibrated to report the actual value of flow. Data Units set by [4]
17	Alarm Trip Point High	REAL	Set	NV	Determines the Flow [6] value above which an Alarm Condition will occur	See 'Note: Status' below Data Units set by [4]
18	Alarm Trip Point Low	REAL	Set	NV	Determines the Flow [6] value below which an Alarm Condition Will occur	See 'Note: Status' below Data Units set by [4]
20	Alarm Settling Time	DINT	Set	NV	Determines the time that the Flow [6] value must exceed the Trip Point before the exception condition is generated.	See 'Note: Status' below Time in milliseconds
21	Warning Trip Point High	REAL	Set	NV	Determines the Flow [6] value above which a Warning Condition will occur	See 'Note: 'Status' below Data Units set by [4]
22	Warning Trip Point Low	REAL	Set	NV	Determines the Flow [6] value below which a Warning Condition will occur	See 'Note: Status' below Data Units set by [4]
24	Warning Settling Time	DINT	Set	NV	Determines the time that the Flow [6] value must exceed the Trip Point before the exception condition is generated.	See 'Note: Status' below Time in milliseconds

Table 6-16: Flow Meter Instance 1 Attributes
Section 6 Detailed Configuration

Table 6-16:	Flow Me	ter Instance	1 Attributes	(continued)
-------------	---------	--------------	--------------	-------------

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
35	Gas Calibration Object Instance	DINT	Set	NV	Configures which S-Gas Calibration Object instance is currently active for this object.	See Note 'Gas Calibration Object Instance' below
96	Flow Hours	DINT	Get	NV	Total hours of flow through the device	
105	Zero Duration	DINT	Set	NV	The amount of time used by the device to perform a device zero operation	Time in milliseconds
112	Zero Enable	BOOL	Set	v	Starts a device sensor zero operation	Write '1' to this attribute starts a zero operation provided device status 'Zero Operation Inhibit' is not set See Section 7.1.6
125	Totalizer Units	DINT	Set	NV	The engineering units used to report the totalizer values in this object	See Note 'Data Units' and 'Totalizers' below
126	Flow Totalizer	REAL	Set	NV	Total gas flowed through the device.	See Note 'Totalizers' below Data Units set by [125]
130	Custom Flow Totalizer	REAL	Set	NV	Total gas flowed through the device since the last commanded 'Reset' through Custom Flow Totalizer Control [131]	See Note 'Totalizers' below Data Units set by [125]
131	Custom Flow Totalizer Control	DINT	R/W	v	Commands start, stop and reset of Custom Flow Totalizer.	See Note 'Totalizers' below
140	Zero Recommend Time	DINT	R/W	NV	Time limit since the last zero operations that will set the 'Zero Recommended' status.	See 'Note: Status' below and Section 7.1.5 Time in seconds 0 = Disabled
141	Zero Tolerance Settle Time	DINT	R/W	NV	The number of seconds after 0% setpoint that the device will wait before checking 'Zero Recommend' status	See 'Note: Status' below and Section 7.1.5 MFC Only
142	Zero Tolerance Band	REAL	R/W	NV	The tolerance band for which the 'Zero Recommended' status will be set if when setpoint = 0%	See 'Note: Status' below and Section 7.1.5 0 = Disabled MFC Only
143	Zero Success Band	REAL	R/W	NV	The error band for which the 'Bad Zero Warning' status will be set after completion of a zero operation and the resulting zero exceeds this band	See 'Note: Status' below and Section 7.2.5
144	Zero Minimum Drift Time	DINT	R/W	NV	The minimum time limit between two successful zero operations that must occur before an excessive zero drift diagnostic will be run.	See 'Note: Status' below and Section 7.2.4 0 = Disabled

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
145	Excessive Zero Drift Multiplier	REAL	R/W	NV	A span adjustment to adjust/expand the Expected Drift rate	See 'Note: Status' below and Section 7.2.4
146	Excessive Zero Drift Offset	REAL	R/W	NV	An offset adjustment to adjust/expand the Expected Drift rate	See 'Note: Status' below and Section 7.2.4
148	Total Drift	REAL	R			See 'Note: Status' below and Section 7.2.4
149	Zero History Table	STRUCT of:	R	NV	Data collected on the last 128 zero operations	To retrieve data from the Zero History Table see Service Code 0x32 below
	Calibration Instance	UDINT			The Calibration Instance at the time of the zero operation	
	Zero Drift	REAL			The Zero Drift prior to commencing the zero operation	
	Temperature	REAL			The Temperature, in Celsius, prior to commencing the zero operation	
	Power On Hours	UDINT			Total power on hours at the time of the zero operation	
222	No Flow Limit	REAL	R/W	NV	The percentage of setpoint by which if 'Flow' does not exceed will raise an 'Active_Alarms_No_Flow' status is raised	See 'Note: Status' below and Section 7.3.3 Units in percent MFC Only
223	No Flow Settling Time	DINT	R/W	NV	The time in which a No Flow condition must exists before a status is raised.	See 'Note: Status' below and Section 7.3.3 Time in milliseconds MFC Only
224	Choked Flow Limit	REAL	R/W	NV	The percentage of setpoint by which if 'Flow' does not exceed will raise an 'ActiveWarnings_Choked_Flow' or 'Active_Alarms_Choked_Flow' status is raised	See 'Note: Status' below and Section 7.2.3 and 7.3.3 Units in percent MFC Only
225	Choked Flow Settling Tiome	DINT	R/W	NV	The time in which a choke flow condition must exists before a status is raised.	See 'Note: Status' below and Section 7.2.3 and 7.3.3 Time in milliseconds MFC Only
226	Overhaul-Due	DINT	R/W		The time remaining in hours until device requires service. When this timer reaches 0, 'Overhaul Due Warning' status shall be set	See Note 'Timers' below
227	Calibration _Due	DINT	R/W	NV	The time remaining in hours until the device needs to be recalibrated. When this timer reaches 0, 'Calibration Due Warning' status shall be set	See Note 'Timers' below

Section 6 Detailed Configuration

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
228	Backstream Flow Limit	REAL	R/W	NV	The threshold by which reverse flow must exceed to raise a backstream error status	See 'Note: Status' below and Section 7.4.1 Units in percent
229	Backstream Time Limit	DINT R/W N	NV	The time in which a back-streaming flow condition must exist before a status is raised.	See 'Note: Status' below and Section 7.4.1 Time in milliseconds	
230	Flow Totalizer Overflow Threshold	REAL	R/W	NV	The threshold by which Flow Totalizer[126] must exceed before a 'Totalizer Overflow' status is raised	See 'Note: Status' below and Section 7.2.12

Note: Data Units

The value of this attribute is limited to the values specified in the Volumetric Flow Units Table in Appendix C - Data Units.

Note: Status

Status bits associated with this object are listed below. See section 7 for details on specific status and behavior.

- [Active_Errors]{184-1-3}, Bit 2: Back Streaming Error
- [Active_Alarms]{184-1-4}, Bit 0: Low Flow Alarm
- [Active_Alarms]{184-1-4}, Bit 1: High Flow Alarm
- [Active_Alarms]{184-1-4}, Bit 2: No Flow Alarm
- [Active_Alarms]{184-1-4}, Bit 3: Choked Flow Alarm
- [Active_Warnings]{184-1-5}, Bit 0: Low Flow Warning
- [Active Warnings]{184-1-5}, Bit 1: High Flow Warning
- [Active_Warnings]{184-1-5}, Bit 3: Choked Flow Warning
- [Active_Warnings]{184-1-5}, Bit 4: Excessive Zero Drift Warning
- [Active_Warnings]{184-1-5}, Bit 5: Bad Zero Warning
- [Active_Warnings]{184-1-5}, Bit 17: Calibration Due
- [Active_Warnings] {184-1-5}, Bit 18: Totalizer Overflow
- [Active_Warnings]{184-1-5}, Bit 19: Overhaul Due

Note: Gas Calibration Object Instance

The value of this attribute is limited to the number of Process Gas Object instances configured in the device. The minimum value is 1, which is also the default value.

Note: Totalizers	There are two totalizers: Flow Totalizer [126] and Custom Flow Totalizer [130]. The behavior of each totalizer is described in the following sections. The units of measure for both totalizers is set using Totalizer Units [125].
Flow Totalizer	Flow Totalizer [126] is a count-up flow totalizer. The attribute can be set to any value. If this totalizer value exceeds Totalizer Overflow Threshold [230], status Active_Warnings_Totalizer_Overflow {184-1-5} will be set. Setting this totalizer value below the overflow threshold will clear the status.
Custom Flow Totalizer	
Note: Timer	Custom Flow Totalizer [130] is a count-up flow totalizer. This totalizer value is controlled by Custom Flow Totalizer Control [131]. Options for controlling the totalizer are Run (1), Stop (2), and Reset (3). Reading Custom Flow Totalizer Control [131] will return the current operational state of the timer: Run (1) or Stop (2). When the Reset (3) command is written to Custom Flow Totalizer Control [131], the totalizer will reset to zero, and then return to its operational state prior to writing the reset command.
	There are two countdown timers, Overhaul Due [226] and Calibration Due [227], and one count-up timer Power On Hours [222].
Countdown Timers	
	Overhaul Due [226] and Calibration Due [227] are countdown timers. These timers can be utilized to raise preventative maintenance and calibration events. Counting down commences when the device is flowing gas. When the counters reach zero, their respective status' [Active_Alarms_Overhaul_Due] [184-1-5], and [Active_Alarms_Calibration_Due] [184-1-5] will be set. Writing a non-zero value to these timers will clear their respective status'. These timers can be written to at any time.
Count-Up Timers	
	Power On Hours[222] is a count-up timer that represents the total time, in hours, that the device has been powered on. This timer is not resettable.

Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix D: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix D: Set Attribute Single
		Returns an entry in the Zero History Table[149]	See Service Details

Table 6-17: Flow Meter Instance 1 Services

Service Detail

Table 6-18: Get Zero History Service Arguments

Parameter Name	Data Type	Required	Parameter Value	Semantics
Array Index	UDINT	Y	1-128	This parameter is the index into the Zero History Table. A value of 1 is the most recent entry in the table, a value of 128 is the oldest entry.

Table 6-19: Get Zero History Service Response

Parameter Name	Data Type	Required	Parameter Value	Semantics
Calibration Instance	UDINT	Y	1-6	The Calibration Instance at the time of the zero operation
Zero Drift	REAL	Y	-	The Zero Drift prior to commencing the zero operation
Temperature	REAL	Y	-	The Temperature prior to commencing the zero operation
Power On Hours	REAL	Y	-	Total power on hours at the time of the zero operation

Valve Driver Object [0x96]

Device Types: MFC

The Valve Driver is responsible for management of the actuator device controlling the process.

Attributes

Table 6-20: Valve Driver Object Instance 1 Attributes

ID	Name	Data Type	Access Rule	NV	Description	Notes
5	Override	DINT	Set	v	Specifies a direct override of the physical actuator	See Note 'Override' below
6	Value	REAL	Get	v	The value of the analog output signal used to drive the physical actuator	See Note 'Valve' below. Units in Percent
18	Warning Trip Point High	REAL	Set	NV	Determines the Value[6] above which a warning condition will occur	See Note 'Status' below. Units in Percent
19	Warning Trip Point Low	REAL	Set	NV	Determines the Value[6] below which a warning condition will occur	See Note 'Status' below. Units in Percent
20	Warning Hysteresis	REAL	Set	NV	Determines the Value[6] that must recover from a warning condition to clear the warning status	See Note 'Status' below.
21	Safe State	DINT	Set	NV	Specifies the behavior for the physical actuator in an Operational State other than Executing State	See Note 'Safe State' below
22	Safe Value	REAL	Set	NV	The analog output signal value that is indicated by Value[6] if the Safe State[21] is configured to 'Use Safe Value'	Default = 0%

Note: Override

The following table outlines the valid actuator override types.

Table 6-21: Override

Value	State	Description
0	Normal	Actuator is under normal operational control
1	Closed	Actuator is driven fully closed
2	Open	Actuator is driven fully open
3	Hold	Actuator is held to last updated analog output signal prior to assertion of override
4	Safe State	Actuator is driven to the condition specified by the Safe State[21] attribute

Note: Valve

To interpret the value of this attribute, it is important to understand the following terms:

Operational Range:

This is the range that is reported by Value [6]. The operational range of the actuator is full range that the actuator can be driven to move. This corresponds to Value [6] values of 0 to 100%.

Nominal Control Range:

The nominal control range is a set of values that the actuator is driven to that maps directly between no flow and full-scale flow. This set of values is a sub-range within the large operational range of the actuator.

Example, the nominal control range for a 0 to 100 SCCM device flowing nitrogen could be as follows:

at 0 SCCM Actuator = 20%

at 100 SCCM, Actuator = 30%

Under normal operational control (no override), the actuator generally operates in the nominal control range. The upper end of the control range is not an absolute limit under normal control. The controller will drive the actuator to whatever value is necessary to control flow. For example, if a restriction occurred upstream of the device resulting in reduced supply to the device, the controller will drive the actuator beyond the nominal control range to maintain control.

Status

Status bits associated with this object are listed below. For details, see Section 7.

- [Active_Warnings]{184-1-5}, Bit 8: Valve High Warning
- [Active_Warnings]{184-1-5}, Bit 9: Valve Low Warning

Safe State

The following table outlines valid values for this attribute. This table applies for normally closed and normally open valves.

Table 6-22: Safe State

Value	State	Description
0	Closed	The actuator will be driven closed (0%)
1	Open	The actuator will be driven open (100%)
2	Hold Last Value	The actuator will be driven to the last updated value of the analog output just prior to the entering of the safe state.
3	Use Safe Value	The actuator will be driven to the value configured in Safe Value [22]

Services

Table 6-23: Valve Driver Object Instance 0 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix D: Get Attribute Single

Table 6-24: Valve Driver Object Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix D: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix D: Set Attribute Single

Flow Controller Object [0x9E]

Device Types: MFC

The Flow Controller object is responsible for closing the loop between the measured process variable (via the Flow Meter Object) and the control variable (via the Valve Drive Object).

Attributes

Table 6-25: Flow Controller Object Instance 1 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
4	Data Units	ENGUNITS	Set	NV	Defines the Engineering Units context of Setpoint [6] and other attributes in this object	See 'Note: Data Units' below
6	Setpoint	REAL	Set	V	The sensor value that the device will maintain a steady state condition.	Units set by [4]
15	Warning Settling Time	DINT	Set	NV	Time allowed for the control-loop to settle to within the error band	See 'Note: Status' below Time in milliseconds
16	Warning Error Band	DINT	Set	NV	The maximum deviation band by which Setpoint must equal the Process Variable before a status is indicated	See 'Note: Status' below Units set by [4]
19	Constant Time Ramp Rate	UDINT	Set	NV	The amount of time the controller will take to "ramp" flow from its current value to its final value as commanded in Setpoint [6]	Default = 0 [disabled] Time in milliseconds
194	Setpoint Limit	REAL	Set	NV	The maximum value for setpoint. If setpoint exceeds this value, the behavior of the controller is defined by Setpoint Limit Action[201]	Units set by [4]
201	Setpoint Limit Action	DINT	Set	NV	Sets the behavior of the controller when Setpoint[6] > Setpoint Limit[194]	See Note: Setpoint Limit Action
202	Live Setpoint	REAL	Get	V	The actual setpoint to which the process variable Flow will be controlled	See section 7.2.10 for more information on Setpoint Limiting

Note: Data Units

The value of this attribute is limited to the values specified in the Volumetric Flow Units Table and Mass Flow Units table in Appendix C - Data Units.

Note: Status

Status bits associated with this object are listed below. For details, see Section 7.

- [Active_Warnings]{184-1-5}, Bit 11: Setpoint Deviation
- [Active_Warnings]{184-1-5}, Bit 13: Setpoint Overrange
- [Active_Warnings]{184-1-5}, Bit 14: Setpoint Limited

Note: Setpoint Limited Action

See section 7.2.10 for more information on Setpoint Limiting

Table 6-26: Setpoint Limiting Actions

Value	Description
0	Setpoint Limiting disabled
1	Raise 'Setpoint Over range' warning status, but do not actively limit the setpoint
2	Raise 'Setpoint Limited' status and actively limit the setpoint to Setpoint Limit [194]

Services

Table 6-27: Flow Controller Object Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix D: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix D: Set Attribute Single

Process Gas Object [0x66]

Device Types: MFC and MFM

The Process Gas object defines characteristics associated with linearization/compensation of the gas flow sensor.

Attributes

Table 6-28 Process Gas Instance 0 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	NV	Revision of the Process Gas object class definition upon which the implementation is based.	If updates require an increase in this value, then the value of this attribute increases by 1. Range 1– 65535
2	Max Instance	UINT	Get	NV	The maximum instance ID of this object supported by the device	
3	Number of Instances	UINT	Get	NV	The number of instances of this object supported by the device	

ID	Name	Data Type	Access Rule	NV	Description	Notes
37	Reference Temperature	REAL	Get	NV	The gas temperature, in Celsius, under which this calibration was performed	
38	Reference Pressure	REAL	Get	NV	The gas pressure, in Pa, under which this calibration was performed	
40	Gas Standard Number	DINT	Get	NV	The gas type number assigned to this gas	See Note: 'Gas Standard Number' below Default = 0, no gas type specified
42	Calibration Data Units	DINT	Get	NV	The engineering units of measure assigned to this gas	See Appendix C for units codes
45	Configured Range	REAL	Get	NV	The maximum calibrated flow value	
200	FAT Date	DATE	Set	NV	The factory acceptance date for this gas calibration	Number of days since 1972. 0 = 1/1/1972

Table 6-29: Process Gas Instance 1..n Attributes

Note: Gas Standard Number

The Gas Standard Number as defined by SEMI publication SEMI E52-0298, "Practice for Referencing Gases Used in Digital Mass Flow Controllers."

Services

Table 6-30: Process Gas Instance 0 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single

Table 6-31: Process Gas Instance 1...n Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix E: Set Attribute Single

Temperature Meter Object [0xA4]

Device Type(s): MFC and MFM

The Temperature Meter object measures the temperature of the process gas.

Attributes

ID	Name	Data Type	Access Rule	NV	Description	Notes
4	Temperature Units	DINT	Set	NV	Sets the engineering units of measure of Temperature [6] and related attributes in this class	See Appendix C for unit codes
6	Temperature	REAL	Get	V	Temperature sensor value	Units set by [4]
21	High Temperature Warning Trip Point	REAL	Set	NV	Sets the threshold above which an High Temperature status will occur	See 'Note: Status' below Units set by [4]
22	Low Temperature Warning Trip Point	REAL	Set	NV	Sets the threshold below which an High Temperature status will occur	See 'Note: Status' below Units set by [4]
24	Warning Trip Point Settling Time	REAL	Set	NV	Sets the time that Temperature [6] must exceed the Trip Point thresholds before the Status Condition is raised. This value also sets the time that 'Temperature' has recovered from the Trip Point threshold before the associated status condition is cleared	See 'Note: Status' below Time in milliseconds

 Table 6-32: Temperature Meter Object Instance 1 Attributes

Status

Status bits associated with this object are listed below. For details, see section 7.

- [Active_Alarms]{184-1-4}, Bit 24: Temperature Sensor Fail
- [Active_Warnings]{184-1-5}, Bit 24: High Temperature
- [Active_Warnings]{184-1-5}, Bit 25: Low Temperature

Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix E: Set Attribute Single

Table 6-33: Temperature Meter Instance 1 Services

Status Object (0xB8)

The Status Object contains all the status bits that can be indicated by the device. Details of how each status indication functions and their associated attributes for configure the status function can be reference in Section 7

Attributes

Table 6-34: Status Object instance 1..n Attributes

ID	Name	Data Type	Access Rule	NV	Description	Notes
3	Active Errors	DWORD	Get	NV	Active Error Status Bits	See Note 'Active Errors'
4	Active Alarms	DWORD	Get	NV	Active Alarms Status Bits	See Note 'Active Alarms'
5	Active Warnings	DWORD	Get	NV	Active Warning Status Bits	See Note 'Active Warnings'
6	Device Status	DWORD	Get	NV	Device Status Bits	See Note 'Device Status'
8	Alarms Mask	DWORD	Get	NV	Active Alarms Mask Bits	See Note 'Mask Bits'
9	Warnings Mask	DWORD	Get	NV	Active Warnings Mask Bits	See Note 'Mask Bits'

Note: Active Errors

Table 6-35: Active Error Bit Definitions

Bit(s)	Description			
0-1	Reserved			
2	Back Streaming Error			
3-17	Reserved			
18	Internal Communications Error			
19-22	Reserved			
23	NV Memory Fail			
24-31	Reserved			

Note: Active Alarms

Table 6-36	
Bit(s)	Description
0	Low Flow Alarm
1	High Flow Alarm
2	No Flow Alarm
3	Choked Flow Alarm
4-22	Reserved
23	Using Backup NV Memory
24	Temperature Sensor Fail
25-31	Reserved

Note: Active Warnings

able 6-37	
Bit(s)	Description
0	Low Flow Warning
1	High Flow Warning
2	Reserved
3	Choked Flow Warning
4	Excessive Zero Drift Warning
5	Bad Zero Warning
6-7	Reserved
8	Valve High Warning
9	Valve Low Warning
10	Reserved
11	Setpoint Deviation

Bit(s)	Description
12	Reserved
13	Setpoint Over range
14	Setpoint Limited
15-16	Reserved
17	Calibration Due
18	Totalizer Overflow
19	Overhaul Due
20-23	Reserved
24	High Temperature
25	Low Temperature
26	Supply Volts High
27	Supply Volts Low
28-31	Reserved

Note: Device Status

Table 6-38:	
Bit(s)	Description
0	Device Is Executing
1	Flow Reading Valid
2	Temperature Reading Valid
3	Device Is Zeroing
4	Zero Recommended
5	Zero Operation Inhibit
6-7	Reserved
8	Device Error
9	Device Alarm
10	Device Warning
11-31	Reserved

Note: Mask Bits

Active Alarms [4] and Active Warnings [5] can be masked by setting the corresponding bits in the mask attributes Alarms Mask [8] and Warnings [9]

Services

Table 6-39: Status Object Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix E: Set Attribute Single

There are four levels of status: Errors, Alarms, Warnings, and Device in decreasing order of severity. The corresponding tag names for the status attributes are [Active_Errors] {184-1-3}, [Active_Alarms] {184-1-4}, [Active_Warnings] {184-1-5}, [Device_Status] {184-1-6}. Each status word is an enumerated bitfield of type DWORD. These status bits are in the Status Class (Class ID 184) and are mapped to Produce Assemblies 201, 203. [Device_Status] {184-1-6} is also mapped to Assembly instance 204.

[Active_Alarms] {184-1-4} and [Active_Warnings] {184-1-5} can be masked by setting the corresponding mask attributes [Alarms_Mask] {184-1-8} and [Warnings_Mask] {184-1-9}. A value of 0 for any mask bit blocks the correspond alarm or warning bit from being indicated. A value of 1 for any mask bit will allow the alarm or warning bit to be indicated.

[Active_Errors] {184-1-3} and [Device_Status] {184-1-6} cannot be masked. If any bit in [Active_Errors] {184-1-3} is set, it will force the flow controller into the Safe State. The device will require a reset to return to normal operation. A reset of the device can be achieved through a power cycle or by sending the Reset service (Service ID 5) to the Identity Class (Class ID 0x01).

Device Status {184-1-6}

Bit 0: Device is Executing [Device_Status_Dev_Exec]

This status indicates the current execution state of the device

Bit Value	Description
1	The device is Executing and controlling to setpoint
0	The device is in the Safe State

The state of this status bit is dependent on **[Active_Errors]{184-1-3}** (see section TBD) and the existence of a Class 1 Implicit connection.

Bit 1: Flow Reading Valid [Device_Status_Flow_Valid]

This status indicates the quality of the flow sensor reading.

Bit Value	Description
1	The Flow Sensor operating nominally, and flow sensor readings are within normal range
0	Flow sensor reading is out of range and/or not operating nominally

NOTE: Sensor. Underrange and Sensor. Overrange are internal variables

Bit 2: Temperature Reading Valid [Device_Status_Temp_Valid]

This status indicates the quality of the temperature sensor reading.

Bit Value	Description
1	The temperature sensor operating nominally, and temperature sensor readings are within normal range
0	Temperature sensor reading is out of range and/or not operating nominally

NOTE: Sensor.Underrange and Sensor.Overrange are internal variables

Bit 3: Device Is Zeroing [Device_Status_Dev_Zeroing]

This status indicated the current state a sensor zero operation

Bit Value	Description
1	The device is currently executing a Sensor Zero operation
0	Sensor Zero operation is complete

Bit 4: Zero Recommended [Device_Status_Zero_Recommend]

This status indicates that the device should be zeroed (Sensor Zero operation is recommended). This status will be set when either of the following conditions is met:

Condition 1: Zero Warn Time Expired

Power on time since the last Successful Zero Operation > [Zero_Recommend_Time {169-1-140}].

A Successful Zero Operation is defined as a completed Zero Operation that does not result in setting **[Device_Warn_Bad_Zero] {184-1-5}** or **[Device_Warn_Zero_Drift] {184-1-5}** warning status'.

This diagnostic is disabled when [Zero_Recommend_Time] {169-1-140} = 0.

Condition 2: Zero Out of Tolerance

If [Ctrl_Setpoint {158-1-6}] = 0 for > [Zero_Tolerance_Settle_Time] {169-1-141}

AND

Abs([Flow] $\{169-1-6\}$) > 0.5 * [Zero_Tolerance_Band] $\{169-1-142\}$.

This diagnostic is disabled when [Zero_Tolerance_Band] {169-1-142} = 0.

Bit Value	Description
1	When one of the two above conditions have been met
0	A successful Zero Operation has been completed

Bit 5: Zero Operation Inhibit [Device_Status_Zero_Op_Inhibit]

This status indicates that device cannot perform a zero operation. A sensor zero operation *will be inhibited* when *any* of the following conditions are present:

- [Ctrl_Setpoint] {158-1-6} is not zero
- [Valve_Override] {150-1-5} is not set to 'Normal'
- The device is in the Safe State AND [Valve_Safe_State] {150-1-21} is not set to 'Closed'
- Any Alarm is Active [Active_Alarms] {184-1-4}
- Any Error is Active [Acitve_Errors] {184-1-3}

Bit Value	Description
1	Device Zero Operations are inhibited
0	Device Zero operations can be performed

Bit 8: Device Error [Device_Status_Dev_Error]

This status indicates if any [Active_Error] {184-1-3} are present

Bit Value	Description
1	One or more Errors are present
0	No Errors are present

Bit 9: Device Alarm [Device_Status_Dev_Alarm]

This status indicates if any [Active_Alarm] {184-1-4} are present

Bit Value	Description
1	One or more Alarms are present
0	No Alarms are present

 Keine
 <th

Bit 10: Device Warning [Device_Status_Dev_Warning]

This status indicates if any [Active_Warnings] {184-1-5} are present

Bit Value	Description
1	One or more Warnings are present
0	No Warnings are present

	« EQ »	
[Active_Warnings] {184-1-5}	IN OUT	[Device_Status_Dev_Warnings] {184-1-6}

Warnings {184-1-5}

Bit 0: Low Flow Warning [Active_Warnings_Low_Flow]

The status indicates a low flow warning condition exists.

This status is *disabled* when [Device_Status_Flow_Valid] {184-1-6} = 0

See Diagram TBD for typical status low processing.

Bit Value	Description
1	[Flow] {169-1-6} < [Flow_Warn_TP_Low] {169-1-22} FOR Time Period > [Flow_Warn_Settling_Time] {169-1-24}
0	[Flow] {169-1-6} > ([Flow_Warn_TP_Low] {169-1-22} + [Flow_Warn_Hyst] {169-1-23}) FOR Time Period > [Flow_Warn_Settling_Time] {169-1-24}

Bit 1: High Flow Warning [Active_Warnings_High_Flow]

This status indicates a high flow warning status condition.

This status is *disabled* when [Device_Status_Flow_Valid] {184-1-6} = 0

See Diagram TBD for typical status high processing.

Bit Value	Description
1	[Flow] {169-1-6} > [Flow_Warn_TP_High] {169-1-21} FOR Time Period > [Flow_Warn_Settling_Time] {169-1-24}
0	[Flow] {169-1-6} < ([Flow_Warn_TP_High] {169-1-21} - [Flow_Warn_Hyst] {169-1-23}) FOR Time Period > [Flow_Warn_Settling_Time] {169-1-24}

Bit 3: Choked Flow Warning [Active_Warnings_Choked_Flow]

This status indicates a choked flow alarm is imminent.

This status is *disabled* when *any* of the following conditions exist:

- [Device_Status_Flow_Valid] {184-1-6} = 0
- [Active_Alarms_Choked_Flow_Alarm] {184-1-4} = 1
- [Ctrl_Setpoint] {158-1-6} = 0.0
- [Valve_Override] {150-1-5} = 1 (Off)

Bit Value	Description
1	[Flow] {169-1-6} < ([Choked_Flow_Lim] {169-1-224} * [Ctrl_Setpoint] {158-1-6}) AND [Valve_Position] {150-1-6} > [70% * Max Valve Position] FOR Time Period > (30% * [Choked_Flow_Settling_Time] {169-1-225})
0	[Valve_Position] {150-1-6} < [70% * Max Valve Position] OR [Flow] {169-1-6} > ([Choked_Flow_Lim] {169-1-224} * [Ctrl_Setpoint] {158-1-6})

This warning status is a function of Setpoint and Settling Time whereby the trip point is a percentage of the current setpoint for 10% of the settling time.

Example: If **[Choked_Flow_Limit]** = 30%, **[Choked_Flow_Settling_Time]** = 10 seconds, and the current setpoint **[Ctrl_Setpoint]** = 80%, then the status will be raised when [Flow] < $(30\% * 80\%) \rightarrow 24\%$ for (30% * 10 seconds) or 3 seconds.

Bit 4: Excessive Zero Drift Warning [Active_Warnings_Zero_Drift]

This diagnostic indicates an excessive shift in zero since the last Zero Operation.

This diagnostic is run when [Ctrl_Setpont] {158-1-6} = 0 for [Zero_Warn_Settle_Time] {169-1-141}.

This diagnostic is *disabled* when [Zero_Min_Drift_Time] {169-1-144} = 0

Bit Value	Description
1	The previous Zero Operation was successful AND Time since Last Zero Operation > [Zero_Min_Drift_Time] {169-1-144} AND The change in [Flow] {169-1-6} during the Zero Operation is: > (0.2%FS/Year * [Excess_Drift_Mult] {169-1-145} + [Excess_Drift_Add] {169-1-146})
0	The selected calibration gas page is changed OR [Zero_Min_Drift_Time] {169-1-144} = 0

This diagnostic is detecting a drift in zero since the last time the device was zeroed. This is predicated upon two conditions:

- 1) the previous zero operation was successful and,
- 2) a sufficient amount of time has transpired since the last zero operation as defined by [Zero_Min_Drift_Time] {169-1-144}.

Bit 5: Bad Zero Warning [Active_Warnings_Bad_Zero]

This diagnostic indicates that the last Zero Operation was not successful.

```
This diagnostic is disabled when [Zero_Sucess_Band] {169-1-143} = 0
```

Bit Value	Description
1	Zero Operation is Complete AND [Ctrl_Setpoint] {158-1-6} = 0 AND [Flow] {169-1-6} > [Zero_Success_Band] {169-1-143}
0	Zero Operation is Started OR [Zero_Success_Band] {169-1-143} = 0

This diagnostic is performing a qualitative assessment on the result of the current zero operation based upon the flow signal after the zero. For this diagnostic to be as accurate as possible, a good process for zeroing the device should be in place and followed.

Bit 8: Valve High Warning [Active_Warnings_Valve_High]

The status indicates the valve position has exceeded a high position threshold

See Diagram TBD for typical status high processing.

Bit Value	Description
1	[Valve_Position] {150-1-6} > [Valve_Warn_TP_High] {150-1-18}
0	[Valve_Position] {150-1-6} < ([Valve_Warn_TP_High] {150-1-18} +[Valve_Warn_Hyst] {150-1-20})

Bit 9: Valve Low Warning [Active_Warnings_Valve_Low]

The status indicates the valve position has exceeded a low position threshold

See Diagram TBD for typical status high processing.

Bit Value	Description
1	[Valve_Position] {150-1-6} < [Valve_Warn_TP_Low] {150-1-19}
0	[Valve_Position] {150-1-6} > ([Valve_Warn_TP_Low] {150-1-19} + [Valve_Warn_Hyst] {150-1-20})

Bit 11: Setpoint Deviation [Active_Warnings_SP_Deviation]

The status indicates the controller cannot control flow to within the error band within a defined settling time. This diagnostic is *disabled* when *any* of the following conditions exists:

- [Ctrl_Setpoint] {158-1-6} = 0
- [Device_Status_Flow_Valid] {184-1-5} = 0

Bit Value	Description
1	[Flow] {169-1-6} > ([Ctrl_Setpoint] {158-1-6} + (0.5 * [Ctrl_Warn_Error_Band] {158-1-16})) OR [Flow] {169-1-6} < ([Ctrl_Setpoint]] {158-1-6} - (0.5 * [Ctrl_Warn_Error_Band] {158-1-16})) FOR Time Period > [Ctrl_Warn_Settling_Time {158-1-15}]
0	[Flow {169-1-6}] <= ([Ctrl_Setpoint]] {158-1-6} + (0.5 * [Ctrl_Warn_Error_Band] {158-1-16})) AND [Flow] {169-1-6} >= ([Ctrl_Setpoint]] {158-1-6} - (0.5 * [Ctrl_Warn_Error_Band] {158-1-16}))

[Ctrl_Warn_Settling_Time] {158-1-15}

Bit 13: Setpoint Overrange [Active_Warnings_SP_Overrange]

The status indicates the current setpoint has exceeded an upper threshold.

This diagnostic is *disabled* when [Ctrl_SP_Lim_Action] {158-1-201} = 0 (None)

Bit Value	Description
1	[Ctrl_SP_Lim_Action] {158-1-201} = 1 (Raise Overrange Warning) AND [Ctrl_Setpoint] {158-1-6} > [Ctrl_SP_Lim] {158-1-194} FOR Time Period > 1 second
0	[Ctrl_SP_Lim_Action] {158-1-201} = 2 (Limit Setpoint) OR 0 (None) OR [Ctrl_Setpoint] {158-1-6} < [Ctrl_SP_Lim] {158-1-194} FOR Time Period > 1 second

Bit 14: Setpoint Limited [Active_Warnings_SP_Limited]

The status indicates the [Ctrl_Setpoint] {158-1-6} has been limited by a [Ctrl_SP_Lim] {158-1-194}.

When [Ctrl_Setpoint] $\{158-1-6\} < [Ctrl_SP_Lim] \{158-1-194\}$ then [Ctrl_Live_Setpoint] $\{158-1-202\} = [Ctrl_Setpoint] \{158-1-6\}$.

When {Crl_Setpoint] {158-1-6} >= [Ctrl_SP_Lim] {158-1-194} then [Ctrl_Live_Setpoint] {158-1-202} = [Ctrl_SP_Limit] {158-1-6}.

This diagnostic is *disabled* when [Ctrl_SP_Lim_Action] {158-1-201} = 0 (None)

Bit Value	Description
1	[Ctrl_SP_Lim_Action] {158-1-201} = 2 (Limit Setpoint) AND [Ctrl_Setpoint] {158-1-6} > [Ctrl_SP_Lim] {158-1-194} FOR Time Period > 1 second
0	[Ctrl_SP_Lim_Action] {158-1-201} = 2 (Limit Setpoint) OR 0 (None) OR [Ctrl_Setpoint] {158-1-6} < [Ctrl_SP_Lim] {158-1-194} FOR Time Period > 1 second

Bit 17: Calibration Due [Active_Warnings_Cal_Due]

This status indicates the devices needs to be calibrated.

See section Flow Meter Object, Section 6.x for details on Totalizers and Timers.

Bit Value	Description
1	[Cal_Due_Hours] {169-1-227} = 0
0	[Cal_Due_Hours] {169-1-227} > 0

Bit 18: Totalizer Overflow [Active_Warnings_Total_Ovflow]

This status indicates that [Flow_Totalizer] {169-1-126} has exceeded a defined overflow threshold.

See section Flow Meter Object, Section 6.x for details on Totalizers and Timers.

Bit Value	Description
1	[Flow_Totalizer] {169-1-126} > [Tot_Ovfl_Threshold] {169-1-230}
0	[Flow_Totalizer] {169-1-126} <= [Tot_Ovfl_Threshold] {169-1-230}

Bit 19: Overhaul Due [Active_Warnings_Overhaul_Due]

This status indicates that device requires maintenance.

See section Flow Meter Object, Section 6.x for details on Totalizers and Timers.

Bit Value	Description
1	[Overhaul_Due_Hours] {169-1-226} = 0
0	[Overhaul_Due_Hours] {169-1-226} > 0

Bit 24: High Temperature Warning [Active_Warnings_High_Temp]

The status indicates a high internal device temperature warning condition.

See Diagram TBD for typical status high processing.

Bit Value	Description
1	[Temperature] {164-1-6} > [High_Temp_Warn_TP] {164-1-21} FOR Time Period > [Temp_Warn_Settling_Time] {164-1-24}
0	[Temperature] {164-1-6} < [High_Temp_Warn_TP] {164-1-21} FOR Time Period > [Temp_Warn_Settling_Time] {164-1-24}

Bit 25: Low Temperature Warning [Active_Warnings_Low_Temp]

This status indicates a low internal device temperature status condition.

See Diagram TBD for typical status low processing.

Bit Value	Description
1	[Temperature] {164-1-6} < [Low_Temp_Warn_TP] {164-1-22} FOR Time Period > [Temp_Warn_Settling_Time] {164-1-24}
0	[Temperature] {164-1-6} > [Low_Temp_Warn_TP] {164-1-22} FOR Time Period > [Temp_Warn_Settling_Time]

Bit 26: Supply Volts High [Active_Warnings_High_Supply_Volts]

The status indicates the supply voltage is above the high warning trip point.

See Diagram TBD for typical status high processing.

Bit Value	Description
0	[Supply_V] {100-1-191} < [Supply_V_Max_Limit] {100-1-192} FOR Time Period > [Supply_V_Settle_Time] {100-1-193}
1	[Supply_V] {100-1-191} > [Supply_V_Max_Limit] {100-1-192} FOR Time Period > [Supply_V_Settle_Time] {100-1-193}

Bit 27: Supply Volts Low [Active_Warnings_Low_Supply_Volts]

The status indicates the supply voltage is below the low warning trip point.

See Diagram TBD for typical status Low processing.

Bit Value	Description
0	[Supply_V] {100-1-190} > [Supply_V_Min_Limit] {100-1-191} FOR Time Period > [Supply_V_Settle_Time] {100-1-193}
1	[Supply_V] {100-1-190} < [Supply_V_Min_Limit] {100-1-191} FOR Time Period > [Supply_V_Settle_Time] {100-1-193}

Alarms {184-1-4}

Bit 0: Low Flow Alarm [Active_Alarms_Low_Flow]

The status indicates a low flow alarm condition.

See Diagram TBD for typical status how processing.

This diagnostic is *disabled* when [Device_Status_Flow_Valid] {184-1-6} = 0

Bit Value	Description
1	[Flow] {169-1-6} < [Flow_Alarm_TP_Low] {169-1-18} FOR Time Period > [Flow_Alarm_Settling_Time] {169-1-23}
0	[Flow] {169-1-6} > ([Flow_Alarm_TP_Low] {169-1-18} + [Flow_Alarm_Hyst] {169-1-19}) FOR Time Period > [Flow_Alarm_Settling_Time] {169-1-23}

Bit 1: High Flow Alarm [Active_Alarms_High_Flow]

This status indicates a high flow alarm condition.

See Diagram TBD for typical status high processing.

This diagnostic is *disabled* when [Device_Status_Flow_Valid] {184-1-6} = 0.

Bit Value	Description
1	[Flow] {169-1-6} > [Flow_Alarm_TP_High] {169-1-17} FOR Time Period > [Flow_Alarm_Settling_Time] {169-1-23}
0	[Flow] {169-1-6} < ([Flow_Alarm_TP_High] {169-1-17} - [Flow_Alarm_Hyst] {169-1-19}) FOR Time Period > [Flow_Alarm_Settling_Time] {169-1-23}

Bit 2: No Flow Alarm [Active_Alarms_No_Flow]

This status indicates a no flow conditions exists.

This diagnostic is *disabled* when *any* of the following conditions exist:

- [Device_Status_Flow_Valid] {184-1-6} = 0
- [Ctrl_Setpoint] {158-1-6} = 0
- [Valve_Override] {150-1-5} = 1 (Off)

Bit Value	Description
1	[Flow] {169-1-6} < ([No_Flow_Lim] {169-1-222} * [Ctrl_Setpoint] {158-1-6}) AND [Valve_Position] {150-1-6} > [70% * <i>Max Valve Position</i>] FOR Time Period > [No_Flow_Settling_Time] {169-1-223}
0	[Flow] {169-1-6} > ([No_Flow_Lim] {169-1-222} * [Ctrl_Setpoint] {158-1-6}) OR [Valve_Position] {150-1-6} < [70% * <i>Max Valve Position</i>] FOR Time Period > [No_Flow_Settling_Time] {169-1-223}

Bit 3: Choked Flow Alarm [Active_Alarms_Choked_Flow]

This status indicates a choked flow condition exists.

This diagnostic is *disabled* when *any* of the following conditions exist:

- [Device_Status_Flow_Valid] {184-1-6} = 0
- [Ctrl_Setpoint] {158-1-6} = 0
- [Valve_Override] {150-1-5} = 1 (Off)

Bit Value	Description
1	[Flow] {169-1-6} < ([Choked_Flow_Lim] {169-1-224} * [Ctrl_Setpoint] {158-1-6}) AND [Valve_Position] {150-1-6} > [70% * Max Valve Position] FOR Time Period > [Choked_Flow_Settling_Time] {169-1-225}
0	[Flow] {169-1-6} > ([Choked_Flow_Lim] {169-1-224} * [Ctrl_Setpoint] {158-1-6}) OR [Valve_Position] {150-1-6} < [70% * Max Valve Position] FOR Time Period > [Choked_Flow_Settling_Time] {169-1-225}

Bit 23: Using Backup NV Memory [Active_Alarms_NV_Mem]

This status indicates that primary non-volatile memory has failed, and the device is using backup non-volatile memory.

Bit Value	Description	
1	This bit is set when NV Memory write failure has been detected	
0	Indicates NV Memory write failure has not occurred	

Bit 24: Temperature Sensor Fail [Active_Alarms_Temp_Sens_Fail]

This status indicates the operational status of the temperature sensor

Bit Value	Description	
1	Indicates the temperature sensor is non-functional	
0	Indicates the temperature sensor is functional	

Errors {184-1-3}

Bit 2: Back Streaming Error [Active_Errors_Bk_Stream]

This status indicates that back stream condition exits.

This diagnostic is *disabled* when *any* of the following conditions exists:

- [Valve_Override] {150-1-5} = 2 (Purge)
- [Device_Status_Dev_Zeroing] {184-1-6} = 1
- [Devcie_Status_Dev_Alarms] {184-1-6} = 1
- [Device_Status_Dev_Exec] {184-1-6} = 0

Bit Value	Description	
1	[Flow] < [Bk_Stream_Flow_Lim] FOR Time Period > [Bk_Stream_Time_Lim]	
0	This bit can only be cleared with a reset of the device	

Bit 18: Internal Communication Error [Active_Errors_Int_Comms]

This status indicates that a communications error between the Main Board and the EIP Adapter board has been detected.

Bit Value	Description	
1	Error Detected	
0	This bit can only be cleared with a reset of the device	

Bit 23: NV Memory Fail [Active_Errors_NV_Mem_Fail]

This status indicates that both primary and backup non-volatile memories have had write failures detected

Bit Value	Description	
1	Non-volatile memory fail detected	
0	This bit can only be cleared with a reset of the device	

Typical Status High/Low Processing

The following diagrams represent typical Status Low and Status High processing of signals. Several status definitions reference these diagrams.

Status Low Processing

Status High Processing

Section 8: Troubleshooting

Problem	Possible Causes
Scanner is actively scanning the network, but the NET LED is flashing green and MOD LED is solid green	The TCP/IP address for the device <i>is not</i> programmed into the scanner or does not match a device address already programmed in the scanner
	The TCP/IP address for the device <i>is</i> programmed into the scanner. Scanner cannot connect to the device because of one of the following:
	1) The Produce/Consume/Config assembly data sizes are mismatched. The sizes programmed into the scanner do not match the connection configuration. See section TBD or reference the EDS file for the correct assembly sizes
	2) The Produce/Consume/Config assembly IDs for the connection configuration are mismatched. See section TBD or reference the EDS file for the correct assembly ID's
	3) The scanner is programmed to send data to the configuration assembly when the connection is established, however one or more of the data fields in the configuration data have invalid values.
Scanner is actively scanning the network and NET LED goes from solid green to flashing red and the MOD LED is solid green	The exclusive owner connection to the device has timed out and has not been re-established.
When power is applied to the device the NET LED goes solid red and the MOD LED is solid green	The IP address configured in the device conflicts with another device on the network.
When power is applied to the device the NET LED remains off and the MOD LED is solid green	An TCP/IP Address has not been assigned to the device.
When power is applied to the device, the MOD LED switches from flashing Red/Green to solid Red	Cycle power to the device. If problem persists, contact Brooks service.
The device never comes out of Self-Test (MOD LED continually flashes red/green).	Cycle power to the device. If problem persists, contact Brooks service.
A setpoint value is being sent to the device, but the MFC fails control flow (i.e. no actuator movement, low or no flow indication)	Check to make sure that the scanner is not setting the Run/Idle bit to Idle. This can occur if the scanner is put into a special program mode or the device in question has been placed into an "Idle" or "Inhibit" mode.

Appendix A – Ethernet/IP Connections

SLA EIP MFC support Class 1 Implicit Messaging connections and Class 3 Explicit Messaging connections. Class 1 connections are used to pass a grouping of data continuously between the Master scanner and the target device at fast update rates. The grouping of data is defined by Assembly objects (see TBD). The Assemblies are defined to be used with certain connection types. The following sections discuss the following connections types and how they might be utilized on an Ethernet/IP network.

Exclusive Owner Connection

The terms Originator(O) and Target(T) are sometimes used to refer to the two devices respectively. With the Exclusive Owner connection, ownership of the device is established, and data is generally (not always) exchanged in both directions. The Owner-to-Target ($O \rightarrow T$) connection is usually point-to-point (unicast). The Target-to-Owner ($T \rightarrow O$) connection can be either unicast or multicast. Unicast restricts the data exchange between the two devices only. A multicast connection allows other devices to subscribe to the data being exchanged in the T $\rightarrow O$ connection using Listen Only connections if the target device supports this type of connection for the data assembly.

Input Only Connection

The Input Only connection establishes and exchange of data, primarily from the Target to the Owner $(T \rightarrow O)$. The Originator of this connection can be any device on the network including the Owner device. The $T \rightarrow 0$ data is 0 length (NULL) and is used as a 'heartbeat' to keep the connection active. The Target-to-Owner $(T \rightarrow O)$ connection can be either unicast or multicast. Unicast restricts the data exchange between the two devices only. A multicast connection allows other devices to subscribe to the data being exchanged in the $T \rightarrow O$ connection using Listen Only connections if the target device supports this type of connection for the data assembly.

Listen Only Connection

The Listen Only connection allows devices to subscribe to a multicast connection stream from a target device provided that the data assembly used for the connection supports Listen Only. The Originator of this connection can be any device on the network including the Owner device. The pre-requisite to creating this connection is that a multicast connection from the Target must exist (see Exclusive Owner or Input Only connections). The T \rightarrow 0 data is 0 length (NULL) and is ⁸¹ used as a 'heartbeat' to keep the connection active. The Target-to-Owner (T \rightarrow O) connection is added to the subscription stream in the Target device and the Owner will begin to receive data from the multicast stream.

Appendix B- Data Type Definitions

The following table list ODVA data types used throughout this manual and in the ODVA specification. The column C/C++ Encoding is given as a comparative common example reference.

Data Type	Size (bytes)	Description	Range	C/C++ Keyword
BOOL	1	A true/false represented as 0 = false and 1 = true	0 and 1	bool
SINT	1	An 8-bit signed integer value	-128 to 127	char
USINT	1	An 8-bit unsigned integer value	0 to 255	unsigned char
INT	2	A 16-bit signed integer value	-32768 to 32767	short int
UINT	2	A 16-bit unsigned integer value	0 to 65535	unsigned short int
DINT	4	A 32-bit signed integer value	-2147483648 to 2147483647	int
UDINT	4	A 32-bit unsigned integer	0 to 4294967296	unsigned int
REAL	4	An IEEE single precision floating point number	3.4E38 to -3.4E38	float
DREAL	8	An IEEE double precision floating point number		Long
ENGUNIT	1	An enumerated value representing an engineering unit of measure	4096 - 65535	N/A
BYTE	1	An 8-bit Bitfield	N/A	N/A
SHORT STRING	Up to 128 bytes	A character array where the first byte is the number of characters in the array, and the subsequent bytes contain the ASCII characters. This is not a NULL terminated string.	N/A	N/A

Table 9-1 Data Types

Appendix C – Data Units

<i>Table 9-2:</i>	Volumetric Flow	Units	Table

Description	Symbol	Units Code	
Description		Decimal	Hex
percent	%	4103	0x1007
standard cubic centimeter per minute	SCCM	5120	0x1400
standard liter per minute	SLM	5121	0x1401

Table 9-3: Actuator Units

Description	Symbol	Units Code	
Description		Decimal	Hex
Percent	%	4103	0x1007

Table 9-4: Temperature Units

Description	Symbol	Units Code	
Description		Decimal	Hex
deg C	°C	4608	0x1200
deg F	°F	4609	0x1201

Table 9-5: Volume Units Table

Description	Symbol	Units Code	
Description		Decimal	Hex
Liter	L	11778	0x2E02
Cubic Centimeter	cm ³	11793	0x2E11

Appendix D – Service Summary Details

Parameter Name	Data Type	Required	Description	Default
Attribute ID	USINT	Y	The attribute ID of the attribute to be read.	None

 Table 9-6: Get Attribute Single Service Parameters

Table 9-7: Success Response Data

Return Value	Data Type	Description
Attribute Value	The Data Type of the Attribute being read	

Table 9-8: Set Attribute Single Service Parameters

Parameter Name	Data Type	Required	Description	Default
Attribute ID	USINT	Y	The attribute ID of the attribute to be read.	None
Attribute Value	(Equivalent to the data type of the Attribute)	Y	The value to which the attribute will be set	None

Table 9-9: Success Response Data

Return Value	Data Type	Description
NO SUCCESS RESP	PONSE DATA	

Section 10: Glossary

This section is intended as a brief overview of Ethernet/IP™ terminology used throughout this manual.

Assembly An Assembly is a Class that defines a collection of EPATH(s). This collection allows multiple attributes to be virtually accessed all at once. Each instance of an Assembly defines a unique set of EPATH(s).

Attribute A Parameter or Data Item that may be read or written and is used for the purpose of configuration or is used to obtain information.

Example:

The attribute Data Units defines the engineering units flow will be reported in. The attribute Value indicates the current flow through the device. Attributes can be read/write or read only.

Class A logical collection of related Attributes that define a particular function and/or behavior.

Example:

The class S-Analog Sensor contains information about configuring a sensor, the current status of the sensor, and/or the current value of what is being sensed.

Connection A connection is a logical link between two devices by which messages are transferred. A device can have 1 or more simultaneous Connections.

Device Profile A specification that defines a set of DeviceNet objects that uniquely represents a particular device of that type or class. The device profile can further define attributes, services, assemblies, etc. that a device must support to be considered part of that type or class of device. These profiles are found in the ODVA specification, Vol. 1. The SLA5800 Series MFC/MFM conforms to the Generic device profile.

EDS The Electronic Data Sheet (EDS) is a specially formatted text description for a device that describes the connection characteristics and configurable parameters that are accessible via the Ethernet/IP[™] network. EDS files can be read by configuration software used to configure Ethernet/IP[™] networks.

EPATH

An EPATH is a unique identifier (sometimes referred to as a pointer) comprised of a Class ID, an Instance ID, and an Attribute ID. Some Classes have EPATH attributes that point to a particular

data item. An example of this would be the Connection Class that contains two attributes, Produce Path and Consume Path. These attributes define where incoming data is sent to, and outgoing data comes from.

Expected Packet Rate (EPR)

The EPR is an attribute in the Connection Class that defines the maximum amount of time (in msec) messages should be received by the Connection (implementation of this value is dependent upon the Connection type, Class 1 or Class 3, but the behavior is the same in all Connection types). If the time between received messages for that connection exceeds the EPR, the Connection times out. This may result in the Connection being released by the device.

Explicit Connection

A Class 3 Explicit Connection dictates a request and response exchange between two devices. The device sending the request must get a response from the device receiving the request message. Embedded in the Explicit Message is information about the Class, Instance, Attribute, Service, and any service data needed to process the message.

As a result, processing of Explicit Messages generally takes longer than Class 1 messaging. This is why Explicit Connections are typically used for commissioning/configuration.

Implicit Connection

Class 1 Implicit Connections are used for the exchange of data only. How a device processes the data and/or responds with data via an Implicit Connection is defined within the Connection(s) configurations.

Instance

An instance of a Class is a particular invocation of a Class (sometimes referred to as an Object). An Instance of a Class is unique in describing the behavior for a particular kind of object. Each instance of the class contains the same set of attributes defined by the class. The uniqueness of the instance is defined by the attribute values.

Safe State (Safe Mode)

An operational mode or state that is considered "safe" whereby the normal controller process is shut down and mechanical and sensing mechanisms are placed in a safe condition.

Service

A service is a pre-defined action that a Class provides. The most commonly used services are used to configure the device such as Get Attribute (0x0E) or Set Attribute (0x10). Other types of services may directly affect the behavior of a Class (or Object) such as Reset (0x5), Stop (0x6), or Start (0x7). There are many more services not listed here and each Class specifies which Services it supports.

LIMITED WARRANTY

Visit www.BrooksInstrument.com for the terms and conditions of our limited warranty.

SERVICE AND SUPPORT

Brooks is committed to assuring all of our customers receive the ideal flow solution for their application, along with outstanding service and support to back it up. We operate first class repair facilities located around the world to provide rapid response and support. Each location utilizes primary standard calibration equipment to ensure accuracy and reliability for repairs and recalibration and is certified by our local Weights and Measures Authorities and traceable to the relevant International Standards.

Visit www.BrooksInstrument.com to locate the service location nearest to you.

START-UP SERVICE AND IN-SITU CALIBRATION

Brooks Instrument can provide start-up service prior to operation when required.

For some process applications, where ISO-9001 Quality Certification is important, it is mandatory to verify and/or (re)calibrate the products periodically. In many cases this service can be provided under in-situ conditions, and the results will be traceable to the relevant international quality standards.

CUSTOMER SEMINARS AND TRAINING

Brooks Instrument can provide customer seminars and dedicated training to engineers, end users and maintenance persons.

Please contact your nearest sales representative for more details.

HELP DESK

In case you need technical assistance: Americas 1 888 554 FLOW Europe 1 +31 (0) 318 549 290 Asia 1 +81 (0) 3 5633 7100

Due to Brooks Instrument's commitment to continuous improvement of our products, all specifications are subject to change without notice.

TRADEMARKS BrooksBrooks Instrument, LLC All other trademarks are the property of their respective owners.

X-DPT-ETHERNETIP-SLA5800-Series-RevB-MFC-eng/541B208AAG/2019-1 v2

Global Headquarters Brooks Instrument 407 West Vine Street Hatfield, PA 19440-0903 USA Toll-Free (USA): 888-554-FLOW T: 215-362-3500 F: 215-362-3745 BrooksAM@BrooksInstrument.com

A list of all Brooks Instrument locations and contact details can be found at www.BrooksInstrument.com

Copyright 2019Brooks Instrument, LLC All rights reserved. Printed in U.S.A.